
Runtime Access Control in C# 3.0 Using

Extension Methods?

Mihály Biczó, Krisztián Pócza, and Zoltán Porkoláb

Eötvös Loránd University, Faculty of Informatics, Dept. of Programming Languages
Pázmány Péter sétány 1/C, H-1117 Budapest, Hungary.

mihaly.biczo@t-online.hu, kpocza@kpocza.net, gsd@elte.hu

Abstract. Encapsulation is one of the most important features of object-
oriented programming. Reducing the interface where software compo-
nents can communicate with each other increases software quality, secu-
rity and decreases development cost. Compile time or runtime visibility
and access control checking that support encapsulation is the key part
of modern languages and runtime environments. They enforce respon-
sibility separation, implementation and security policies. Most modern
programming languages like C++, C# and Java do not have sophisti-
cated access control mechanisms. They employ a subset or combination
of public, private, protected, internal, and friend access modifiers. How-
ever, this is not true for the Eiffel programming language that defines
sophisticated selective access control called selective export. In this paper
first we describe the existing access control features of C++, C#, Java,
Eiffel and other popular programming languages. After that we show
an example where the current access control features of C# (and most
object-oriented languages) are insufficient. We introduce a method level
access control checking mechanism to C# 3.0 using extension methods.
Our method is able to enforce Eiffel-like selective export in runtime. The
implementation does not require the modification of the compiler and
the caller, only the callee, and introduces minimal syntactic and per-
formance overhead. It can be a practical solution for modular systems
where runtime security is important.

1 Introduction

Even before the birth of the object-oriented programming paradigm [5], the
necessity of introducing constraints in accessing different resources (members,
functions, etc.) in a program has also emerged [7]. These constraints are usu-
ally referred to as access control mechanisms, which directly support the basic
principles of object oriented programming such as data encapsulation and infor-
mation hiding. Information hiding means that a module is capable of hiding its
implementation behind its public interface that is exposed to clients.

In object-oriented environments the lowest level of modularity is the class.
Consequently, existing access control mechanisms operate at the level of re-
sources within a class, namely member variables and methods. Of course, these

? Supported by GVOP-3.2.2.-2004-07-0005/3.0

control mechanisms can be defined at higher (or possibly lower) granularity levels
as well according to the notions that the underlying programming environment
supports. Consequently, one can speak about package level, assembly level, or
even object level access control. Besides class level strategies, these are the usual
levels of access control that programming environments directly support. The
question might arise: is this enough to handle most of the situations?

An instance of a class often has several interactions with other objects during
its lifetime, and each interaction might belong to a different client. A different
client could possibly mean two restrictions:

– During the design phase of the software static client scenarios should be
established.

– For each client scenario the minimal interface of a class that can accomplish
the desired behavior should be set in order to minimize coupling and security
risks between different components.

As a consequence, it is important to be able to expose different client profiles
and interfaces in each such interaction.

Different programming environments expose very different access control
strategies, ranging from simple naming conventions (Python) to refined fea-
ture exports (Eiffel)[4]. Regardless of the chosen strategies, environments can
be divided into two basic categories based on when and how the evaluation and
enforcement of an access control rule happens. While for compiled, statically
typed languages it is the compiler that is responsible for enforcing access con-
trol rules in compile time, for interpreted, dynamically typed languages this is
usually done in runtime by the interpreter.

In this paper we are to compose the two categories on the .NET platform in a
C# based environment [3]. The method that will be introduced has the power of
Eiffel’s feature export mechanism, however, access control checks will be done in
runtime. Hopefully, this extends the dynamic nature of Eiffel’s method, because
theoretically access control can even be adjusted and refined in runtime. The
tools shown include the extension methods of C# 3.0 [14], and also reflection.

In Section 2 an overview of existing programming environments and strategies
will be summarized. In Section 3 a motivating example will be presented. In
Section 4 the high level overview of our solution will be shown. In Section 5 we
present a case study in order to show how the solution works for a real example.
In Section 6 the performance measures will be published. Some related work can
be found in Section 7. Section 8 will provide an overview of current limitations
as well as possible extension points and future work.

2 Overview of Access Control Features in Different

Programming Languages

In this section we briefly overview existing access control features of different
general-purpose programming languages. Besides the analogous mechanisms pro-

vided by C++, Java, and C#, the more sophisticated approach of Eiffel’s selec-
tive export and other alternatives – methods applied by Smalltalk and Python
– will also be mentioned.

The C++ language [13] can be regarded as the ancestor of many modern
programming languages like C#, D and Java, therefore we describe the access
control features of the C++ language first. Access control constraints can be set
at class member level (for both static and instance members). The default level of
access is private, which means that the given resource can be accessed only within
the given class and within objects of that class. This access level can be changed
to public, when all access constraints would be abandoned. Consequently, a class
is not visible to the ”outside” world by default, but this behavior can be changed.
In order to set access control on the members of a class in a class hierarchy, one
may want to set protected access level. A protected member can be reached
within the class and from derived classes. C++ exposes a special mechanism to
control access to class members: it introduces the notion of friend methods and
classes. Once a class has accepted friend methods or classes, these friends can
access all private and protected members of that particular class (of course along
with the public members). However, such a contract between two entities must
be marked explicitly, and may lead to the violation of object-oriented principles,
such as encapsulation.

As for access between base and derived classes, C++ has three kinds of
inheritance: public, private and protected. The difference between the inheritance
modes can be seen in Table 1.

Access modifier in the base public private protected
Inheritance class mode

public public private protected
private private private private
protected protected private protected

Table 1. Inheritance modes and access modifiers in C++

Members that become public in the derived class can be accessed in the derived
class and also from the outside world. Members that become protected can be
accessed only in the derived class, while members that become private are hidden
in the derived class and cannot be accessed from the outside world.

The Java programming language extends the above mentioned access control
features of C++ in a sense, however it does not support different inheritance
modes, only public inheritance. The extension is that access level can be set
not only for class members, but also for classes as well. There are three class
access levels: private (to be used for nested classes), public, and internal. The
notion of an internal class contributes to packages in Java: an internal class
or class member can be accessed only within the package it was defined in. At
class member level, Java has four access modifiers: public, private, protected and
package-private (default).

In C# [3], the access control mechanism is very similar to Java’s implemen-
tation. Likewise Java, C# has also two levels of access control: class and class
member level. A class can be public, private and internal (package-private in
Java). Public classes are accessible by everybody; private classes can be accessed
from the current namespace. Internal (default) classes behave in the same way
as package-private classes in Java; they are accessible from the current assembly.
At class member level C# has five different access modifiers: public, private,
protected, internal and protected internal. Public, private, protected and inter-
nal members behave in the same way as in Java. Protected internal members
behave as if they were protected and internal at the same time.

The Eiffel programming language [4] has a very different approach to access
control than the previously described mechanisms. It is called selective export
and allows features (methods) to be exposed to any named class. The default
access level of a feature is public. However, an export clause can be defined for
any feature which explicitly list classes that are allowed to access the underlying
feature. As for inheritance, Eiffel features are always visible from derived classes,
so – at least from this point of view – there is no private access level between
base and derived classes like there is in C++, C# or Java. In order to clarify
the scene, we are going to present an example.

class READER feature

Read (book : BOOK) is ... end;

book : BOOK;

feature { READER, BOOK }

RentBook (book : BOOK) is ... end;

end -- READER

class BOOK feature

reader : READER;

feature { BOOK, READER }

SetReader (reader : READER) is ... end;

end -- BOOK

In both the READER and the BOOK classes we can find examples of selective export.
In the READER class access to the RentBook method is restricted to the class of
READER (the defining class) and to the class of BOOK. Similarly, in the BOOK class,
access to the SetReader method is limited to the BOOK and READER classes. This
way when associating a reader with a book instance, the link can be built from
both directions: the reader can rent a book, or the book can be rented by a
reader. In both cases a consistent state can be established. When using feature
export, one can employ the {ANY} and {NONE} export lists after a feature clause.
{ANY} is just another form of a fully public feature. On the other hand, {NONE}
is the most restrictive form of a feature export. When it is applied to a feature,
that feature will not be exported to any class, not even to the defining class.
A feature with a {NONE} export list can be accessed from a given instance of a
class, and not even from an other instance.

As opposed to the sophisticated solution of Eiffel, there are environments
which have only two level of access control. One such example is the Smalltalk
language, where all attributes (members) are protected, and all methods are
public. Smalltalk does not support the notion of protected methods, if a method
is intended to have protected access level, it should be placed in the so called –
private protocol – of the defining class.

Another fine example of simple access control is the interpreted, dynamic
Python programming language. Interestingly, instead of the traditional public-
protected-private triple of access levels, Python provides only a naming mecha-
nism called name mangling. If the name of the feature begins with an underscore,
the Python interpreter will mangle its name. All that mechanism provides is that
a feature cannot be mistakenly used, it does not explicitly prevent clients from
using the underlying feature. Although at first this can be regarded as only a
convention that does not provide the strength of the public-protected-private
approach, even Stroustrup admits the weakness of existing access control meth-
ods in [13]: ”The protection of private data relies on restriction of the use of the
class member names. It can therefore be circumvented by addressing manipula-
tion and explicit type conversion. But this, of course, is cheating. C++ protects
against accident rather than deliberate circumvention (fraud).” The same ap-
plies for Python: you can circumvent the mechanism, but this has to be done
explicitly.

Likewise Python, Ruby is also fully interpreted therefore access control is de-
termined dynamically during runtime. Otherwise, the access control implemen-
tation of Ruby is very close to other popular object oriented languages (public,
protected, private); so it is only interesting because the access control checking
is done in runtime not in compilation time.

In the next section we will show a motivating example why very fine grained
access control can be needed in everyday situations.

3 Motivating example

Consider the C# language example in the next code listing that shows a dummy
Car class that has 5 different public methods for different purposes from getting
the color to setting the owner of the car. The methods are not fully implemented
only some dummy implementation is added to the methods to be able to compile
it using the C# compiler.

The public methods are the following:

1. Color GetColor() is responsible for getting the color of the car.
2. void AddOil(double amount) that can be used to fill oil in the oil tank.
3. double CheckOilLevel() that returns the oil level in the oil tank.
4. SetOwner(Person owner) that sets the owner of the car.
5. Person GetOwner() that returns the owner of the car.

When we publish this class to the outside word everybody can reach and call
all public methods of the class. It does make sense that everybody can get the

color of the car using the GetColor method. However only a car mechanic should
be able to check the oil level (CheckOilLevel) and add extra oil (AddOil) if re-
quired. Furthermore, only offices that deal with the registration of cars should be
able to call the SetOwner method, and only the registration office or a policeman
should be able to check the owner of the car using the GetOwner method.

public class Car

{

#region Private fields

//fields

#endregion

#region Misc methods

public Color GetColor()

{

// real implementation goes here

return default(Color);

}

#endregion

#region Oil methods

public void AddOil(double amount)

{

//real implementation goes here

}

public double CheckOil()

{

//real implementation goes here

return default(double);

}

#endregion

#region Owner methods

public void SetOwner(Person owner)

{

//real implementation goes here

}

public Person GetOwner()

{

//real implementation goes here

return default(Person);

}

#endregion

}

There are three ways to enforce the previously mentioned constrains on the
Car class:

1. Use the built-in features of the programming language we are working with.
2. If the access control features of the current programming language is not

eligible then switch to a programming language that has these features.
3. Implement some custom mechanism.

The built-in features of the C# programming language do not provide Eiffel-
like selective export; therefore we cannot properly restrict the method access. We
could change the access control modifiers of the methods that need special access
control features (CheckOilLevel, AddOil, SetOwner, GetOwner) to internal and
move the classes that implement the registration office and the car mechanic to
the same assembly or component. However this solution is not adequate because
the registration office still can check and add oil, and the car mechanic still can
get and set the owner of the car.

We cannot often change the programming language or runtime environment
of our application, so the second solution usually cannot be carried out.

The third solution is the hardest however there is no other way to achieve
our aim in C#. When implementing such a solution it is important to leave
the caller unchanged and change the callee to the less possible degree. It is also
important when one wants torefactor an existing system.

In C# we have two ways to achieve this goal:

1. Use the built-in call interception mechanism of the .NET runtime and check
the type of the caller before the call.

2. Use the new language features of C# 3.0.

The built-in call interception mechanism of the .NET runtime is very slow
(some thousand calls per second) and the callee has to inherit from the class
ContextBoundObject, therefore we decided to use C# 3.0 feature called ex-
tension methods. C# 3.0 will be presented to the public within a year, now a
technology preview version is downloadable [14].

4 High Level Architectural, Component Overview

As we have mentioned previously, our ultimate goal is to extend standard access
control strategies with the least possible intrusion using the latest technologies
and achievements in the C# 3.0 language specification.

The tools we are going to employ include extension methods, attributes, and
reflection.

Extension methods are language enhancements in the C# 3.0 language speci-
fication that mimic as if objects could be extended with new methods in runtime.
Although they are regular static methods, and can be called as common static
methods, they can also be called as if they were pure object methods.

Attributes are elements that allow for adding information to classes and
methods in a declarative way. This declarative information is used for various
purposes during runtime (in our case it will be used to control access to specific
resources).

Attributes add metadata to assemblies, which in turn describe the assembly
they belong to. Via a process known as reflection, a program’s attributes can
be retrieved from its assembly metadata. This concept allows us to extend the
language by creating customized declarative syntax with attributes.

After introducing the basics of the tool we are going to apply, we present
the high level overview of the framework. In the following figure, the structure
can be seen in detail in a UML-like notation. The rectangles are the classes, and
the arrows between them denote dependencies. Rectangles with a dashed border
represent static classes.

Fig. 1. High level overview

In the above scenario we are to control access on ResourceClass. As it can be
seen this class has three methods, each of which should be accessed by a known

set of clients independently of each other. We have previously declared our most
important concepts:

1. Allow only minor changes to the called resource and minimize efforts to fit
existing structures to this framework

2. The caller (the client who uses the methods of ResourceClass) must not be
altered in any way at source level

3. Check for unauthorized access attempts in runtime, and throw an exception
if such an attempt is made

In the following we propose the necessary modifications for each point.

1. Requirement 1:
(a) Methods that should be accessible through this framework should be

set to internal access level, in other words should be confined to their
defining assembly.

(b) Each such method should be marked with attributes indicating which
types can access the given function.

(c) For each set of protected resources such as ResourceClass a static class
should be defined in the same assembly through which resources can be
accessed from outer assemblies as well. (In the architecture figure this
class is ResourceAccess). In ResourceAccess one should define exten-
sion methods for each such method that is to be accessed through this
framework. The body of the extension methods is a simple indirection to
the protected method anticipated by a call to the CheckCaller method
of AccessChecker.

2. Requirement 2:
(a) The caller itself remains unchanged.
(b) In the source file the namespace where the extension methods are defined

has to be included with the using directive.
3. Requirement 3:

(a) Using reflection, the AccessChecker gets the original method and the
attributes that control access on it.

(b) If an unauthorized access attempt is made, a typed exception will be
thrown.

The framework is quite simple, but it has many advantages over existing
techniques. First of all, it can coexist with legacy access control management
techniques, the only place where traditional access control is modified is the
called resource (methods should be declared internal), but the restriction is only
assembly-level, therefore allowing other clients from the same assembly to access
the protected resource in the usual way.

It is just as fine-grained as the selective export features of Eiffel, since for each
method a set of types can be marked in a declarative manner using attributes.
However, these set of attributes can be extended, all we have to do is to inherit
from the CallerAttribute class, and implement the arbitrarily complex access
checking behavior. This means that access control can be managed even through

a configuration file or web service and can be changed every time the application
is started.

In the following section we give a detailed illustrating example how this
framework works in practice.

5 Case Study

In this case study we will show the upgraded version of the example presented
in Section 3 using the framework presented in Section 4. In the examples the
GetOwner and SetOwner methods will be shown and their appropriate callers
will be described. We will examine in detail what kind of changes have to be
applied to the callee, what extra components have to be introduced and what
(slight) changes are to be made to the caller.

Changes to the callee:

1. The first change is that the Car class, which is our ’protected’ resource has
to be moved to another assembly (Library in our example).

2. The access control modifier of methods we would like to extend with runtime
access control features has to be changed from public to internal so that it
would only be accessible from the current assembly.

3. The allowed callers have to be annotated using C# attributes. We use the
AllowedCaller attribute which accepts the caller type name as a string pa-
rameter (i.e.: NamespaceName.TypeName). (Cross references are not allowed,
so the assembly where the caller is implemented cannot be referenced. There-
fore, we decided to describe the allowed types by name.)

Consider the upgraded version of the Car class:

public class Car

{

//...

[AllowedCaller("em.RegistrationOffice")]

internal void SetOwner(Person owner)

{

//real implementation goes here

}

[AllowedCaller("em.RegistrationOffice")]

[AllowedCaller("em.Policeman")]

internal Person GetOwner()

{

//real implementation goes here

return default(Person);

}

//...

}

A new accessor class (called CarAccess in our example) has to be introduced
which contains the extension methods that are responsible for checking if the
caller is allowed to call a particular method.

Requirements of the class are the following:

1. Has to be in the same assembly as the upgraded Car class.
2. It should contain the extension methods which have to share the same name

with the appropriate method in the Car class it extends, should accept all
parameters and return the return value of the appropriate method in the
Car class.

3. Every extension method has to call the runtime access control checker method
and call the method in the Car class that has the same name as itself.

4. It should be explicitly prohibited to inline the extension methods.

A section of the implementation of the CarAccess class can be seen in the fol-
lowing code fragment:

public static class CarAccess

{

//...

[MethodImpl(MethodImplOptions.NoInlining)]

public static void SetOwner(this Car car, Person owner)

{

RACInfrastructure.CheckCaller();

car.SetOwner(owner);

}

[MethodImpl(MethodImplOptions.NoInlining)]

public static Person GetOwner(this Car car)

{

RACInfrastructure.CheckCaller();

return car.GetOwner();

}

//...

}

The implementation of the CheckCaller method will be presented later. It
checks if the direct caller is in the list of allowed callers specified by AllowedCaller

attribute. If it is then it simply returns and allows the appropriate method to
be called otherwise throws an InvalidCaller exception.

In the caller we have to ensure that methods that call the extension methods
will not be inlined by the runtime. Other changes are not required because:

1. If the caller and the callee (Car) are in different assemblies then the internal
methods of the callee cannot be reached. The public methods with the same
name in CarAccess will be visible and called. The runtime access control
checking is performed.

2. If the caller and the callee are in the same assemblies the method in CarAccess

hide the methods in Car with the same name. This scenario works but not
suggested because of encapsulation and code separation.

In the following listing we show the implementation of the RegistrationOffice
class which is allowed to call only the SetOwner and GetOwner methods of the
Car class:

public class RegistrationOffice

{

[MethodImpl(MethodImplOptions.NoInlining)]

public void DoTheRegistration(Car car, Person person)

{

car.SetOwner(person);

}

[MethodImpl(MethodImplOptions.NoInlining)]

public Person CheckRegistration(Car car)

{

return car.GetOwner();

}

//an exception will be thrown because unauthorized

[MethodImpl(MethodImplOptions.NoInlining)]

public void AddOil(Car car)

{

car.AddOil(42);

}

}

From the point of the caller it looks as if it would directly call the appropriate
method of the Car class, but behind the scenes it calls the appropriate extension
method defined in CarAccess.

The CheckCaller method called by the CarAccess class performs the fol-
lowing steps:

1. Queries the current call trace (the prohibition of method inlining for some
methods is introduced because tiny methods are often inlined by the runtime
an it would hide them in the call trace).

2. Queries the extension method from the call trace (the first slot in the call
trace – e.g. CarAccess.SetOwner).

3. Queries the type of the caller of the extension method (the second slot in
the call trace - e.g. RegistrationOffice or Policeman).

4. Using Reflection, it determines the method of the callee hidden by the
extension method (from the name and the first parameter of the extension
method - e.g. Car.SetOwner).

5. Using Reflection, it detects if the type name of the caller is the parameter
of any of the AllowedCaller attributes of the method in the callee.
(a) If true, then returns the CheckCaller method.
(b) Else throws an InvalidCaller exception indicating an unauthorized

caller.

6 Performance Analysis

We have implemented the Case Study presented in Section 5. In this section the
performance of the solution will be measured. Furthermore a caching algorithm
will be introduced and analyzed to increase performance.

1. Host machine with a 2.6 Ghz single core Pentium 4 processor running Virtual
PC 2007 virtualization environment

2. In the virtual machine there is the March CTP version of Visual Studio
" Orcas" [14] installed on a Windows Server 2003 guest Operating System

The performance test intended to measure the pure number of calls / sec. The
test application executed together 100 000 valid calls to 4 different methods
which took 8.39 seconds. The methods of the callee were empty to measure the
pure performance of our solution.

int calls = 100000;

Car car = new Car();

Person p = new Person();

RegistrationOffice regOffice = new RegistrationOffice();

CarMechanic carMechanic = new CarMechanic();

DateTime start = DateTime.Now;

for (int i = 0; i < calls/4; i++)

{

regOffice.DoTheRegistration(car, p);

regOffice.CheckRegistration(car);

carMechanic.CheckCar(car);

carMechanic.AddOil(car);

}

TimeSpan timeDiff = DateTime.Now - start;

Console.WriteLine(string.Format("Time elapsed: {0}", timeDiff));

Console.WriteLine(string.Format("calls/sec: {0}",

calls / (timeDiff.TotalMilliseconds/1000)));

There are three kinds of static information that can be cached regarding the
5 steps CheckCaller method performs presented in the end of Section 5:

1. In step 4 one extension method calls one method from the callee, the exten-
sion method itself determines the method of the callee.

2. In step 5 the list of AllowedCaller attributes that belong to the method of
the callee can be cached, because it is static information.

3. In step 5 if a call from a particular type to a particular method was allowed it
will be always allowed because the access control information is determined
by static attributes. (If the attributes would depend on dynamic information,
this caching step could not be accomplished.)

Incorporating this caching mechanism into our solution we executed the same
test case. Now it performed the same 100000 calls in 4.6 seconds which means
21707 calls/sec.

We also measured the number of invalid (unauthorized) method calls where
an exception is thrown at every method call. 10000 calls were executed without
using cache in 1.75 seconds which means an average of 5706 calls/sec, while the
same 10000 calls where executed with using cache in 1.19 seconds which means
8391 calls/sec.

The comparison of the performance with and without caching can be seen in
Table 2.

Number of calls Time taken (sec) Calls/sec

Authorized calls without cache 100 000 8.39 11918

Authorized calls with cache 100 000 4.6 21707

Unauthorized calls without cache 10 000 1.75 5706

Unauthorized calls with cache 10 000 1.19 8391
Table 2. : Performance comparison

The caching algorithm almost doubled the number of valid method calls for
a given period.

Access control checking mechanism can be disabled or enabled dynamically
by setting a boolean flag to false or true. When disabled, the overhead of a
single method call is two simple method calls (CheckMethod) and the extension
method) and the evaluation of the value of the boolean flag. The computational
overhead is negligible.

7 Related work

Encapsulation in different object-oriented languages and object-oriented soft-
ware design are widely studied and compared by many authors [1, 5, 8]. In [12]
Snyder defined that encapsulation is a technique for minimizing interdependen-
cies among separately-written modules by defining strict external interfaces. By
incorporating encapsulation, design patterns in [2] try to loosen up the coupling
between connected/independent modules.

It is also important to note that encapsulation is widely used in the industry
according to the survey in [13]. The industry level language that has the most
sophisticated access control features is the Eiffel programming language [4].

Scharli noted in [9] that some mainstream, industry level object-oriented lan-
guages offer a very limited approach of encapsulating methods or almost have no
ways to implement encapsulation and access control (e.g. Smalltalk and Python).
Moreover access control or visibility checking is performed in very early stage,
which leads to inflexible and fragile code. Scharli also noted in [9, 10] that access
rights are inseparable from classes (access rights are parts of the implementation
of methods), client categories are fixed (users and heirs), and access rights are not
customizable (encapsulation decision of the clients are impossible). To overcome
these weaknesses, Scharli introduced the concept of Composable Encapsulation
Policies and a model where operators and relations over encapsulation policies
enable us to express encapsulation policy compositions.

To describe the relationship between a class and its subclasses and overcome
the fragile base class problem a unique method was developed [6].

8 Summary

It is clear that access control strategies are of the same age as the object oriented
programming paradigm itself. Therefore, it is no surprise that all mainstream
languages provide mechanisms for controlling access to sensitive, protected re-
sources.

Interestingly, in spite of the fact that programming languages have seen a
continuous evolution, they failed to advance on the access control side, or at
least not to that extent that the increasing complexity of systems would have
demanded. We usually have the same old public-private-protected triplet as we
had decades ago, occasionally completed with modifiers for larger modules.

During the design of Eiffel this situation has been taken into account and a
sophisticated method of feature export has been established. In this paper we
developed an easy-to-use framework for C# 3.0 that is based on the concept of
Eiffel and requires no modifications to be made to either the language or the
compiler. Our solution uses the latest technical offerings from C# 3.0 such as
extension methods, and the new technologies are composed with existing and
proven tools like attributes and reflection.

Furthermore, because of the flexibility of attributes, and because they are
evaluated in runtime, our solution is not confined to type checking, it can be
extended to handle arbitrarily complex access control strategies. This way the
refined version of Eiffel feature exports can be ported to C# 3.0, which is the
next release of the popular C# 3.0 language.

We have implemented a pilot system to test the performance of our frame-
work, and concluded that the solution can be applied in production environments
because the overhead it causes is acceptable in most situations. However, we have
also shown a caching mechanism which can help to increase performance.

Although the pilot implementation served great to verify the concept we have
established, there are a couple of limitations. We can currently restrict access
to types specified by their names, and cannot combine restrictions. Additional
work has to be done by programmers, which means extra efforts. Furthermore,
the identity of the caller cannot be checked efficiently.

However, analyzing the limitations may lead us to many extension possibili-
ties. Currently we plan to advance on how these attributes can be combined and
composed, and whether it is possible to implement Composable Encapsulation
Policies with this framework. It would also be interesting to generate the frame
dynamically so that programmers would not need to hand-code the infrastruc-
ture.

References

1. W. Al-Ahmed. Encapsulation in Object-Oriented Programming: Comparing and

Evaluation. In Workshop on Encapsulation and Access Rights in Object-Oriented
Design and Programming, WEAR 2003.

2. E. Gamma, R. Helm, R. Johnson, J. Vlissides. Design Patterns: Elements of

Reusable Object-Oriented Software. Addison-Wesley, 1995.
3. Juval Lövy. Programming .NET Components. O’Reilly, 2003.
4. Bertrand Meyer. Eiffel – the language. Prentice-Hall, 1991.
5. Bertrand Meyer. Object-oriented software construction. Prentice-Hall, 1997.
6. L. Mikhajlov and E. Sekerinski. A study of the fragile base class problem. In Pro-

ceedings of ECOOP’98, No. 1445 in Lecture Notes in Computer Science, pages
355–383, 1998.

7. H. Morris Jr. Protection in Programming Languages. Communications of the ACM
Volume 16, Issue 1. pages 15–21, 1973.

8. O. Nierstrasz. A survey of object-oriented concepts. In W. Kim and F. Lochovsky,
editors, Object-Oriented Concepts, Databases and Applications, pages 3–21. ACM
Press and Addison Wesley, Reading, Mass., 1989.

9. N. Scharli, A. P. Black, S. Ducasse, O. Nierstrasz, and Roel Wuyts. Composable

Encapsulation Policies. Proceedings of European Conference on Object-Oriented
Programming (ECOOP’04), LNCS 3086, Springer Verlag, June 2004, pages 26-50.

10. N. Scharli, A. P. Black, S. Ducasse. Object-oriented Encapsulation for Dynamically

Typed Languages. Proceedings of 18th International Conference on Object-Oriented
Programming, Systems, Languages and Applications (OOPSLA’04), pages 130-
149. 2004.

11. M. Skoglund. A Survey of the Usage of Encapsulation in Object-Oriented Program-

ming. In Workshop on Encapsulation and Access Rights in Object-Oriented Design
and Programming, WEAR 2003.

12. A. Snyder. Encapsulation and inheritance in object-oriented programming lan-

guages. In Proceedings 1st International Conference on Object-Oriented Program-
ming, Systems, Languages and Applications (OOPSLA’86), pages 38–45. ACM
Press, 1986.

13. B. Stroustrup. The C++ Programming Language. 3rd ed., Addison-Wesley, 2004.
14. Visual Studio Code Name "Orcas" Related CTP Downloads.

http://msdn2.microsoft.com/en-us/vstudio/aa700831.aspx

