Towards Effective Runtime Trace Generation
Techniques in the .NET Framework *

Krisztian P6cza Mihaly Biczé Zoltan Porkolab

E6tvos Lorand University E6tvos Lorand University E6tvos Lorand University

Fac. of Informatics, Dept. of Fac. of Informatics, Dept. of Fac. of Informatics, Dept. of
Programming Lang. and CompilersProgramming Lang. and CompilersProgramming Lang. and Compilers

Pazmany Péter sétany 1/c. Pazmany Péter sétany 1/c. Pazmany Péter sétany 1/c.
H-1117, Budapest, Hungary H-1117, Budapest, Hungary H-1117, Budapest, Hungary

kpocza@kpocza.net mihaly.biczo@axelero.hu gsd@elte.hu

ABSTRACT

Effective runtime trace generation is vital for emstanding, analyzing, and maintaining large-saglgications.
In this paper two cross-language trace generatiethads are introduced for the .NET platform. The&-no
intrusive methods are based on the .NET DebuggiddPaofiling Infrastructure; consequently, neitheditional
development tools, nor the .NET Framework SDK guieed to be installed on the target system. Bagthods
are applied to a test set of real-size executabidscompared by performance and applicability.

Keywords

Runtime trace generation, .NET, Debugger, Profflesgram slicing

1. INTRODUCTION the development machines. What makes things even
more complicated is that incompatibility issues Imhig
also arise in the case of programs and components
that run on a deployment server or a client compute
Further problematic situations include cases when t
deployment servers are in a Network Load Balancing
(NLB) Cluster, or the isolation level on the IIS ke

In order to prepare reliable applications, it is server is too restrictive.

impo_rtar_1t 0 investigat_e programs _“S"_‘g a debquerThe most common research area where low level
application, and examine the application log or the runtime traces are used in the academic world is

ﬁ]\gn}clt?gn;;;Zevgﬂzsgggg:gfgsT}f;rghca:tvzlr;;geousdynamm program slicing [Agr91la, BesOla,_ I?()cOSa,
be detected. However, there are many situationsTlpgsa’ ZhaOSg]. The. result of program slicing can
where a simble debugg,er fails to find the erroneousaISO be u;e_d in the industry. The 0r|g|na.I goal of
instructions and variables. One common example isprogram slicing was _to map mer_1ta| abstractions made
when the error occurs in-a production environment by programmers during debugglng to a reduced set of

statements in source code. With the help of program

\év:\i:gnvr;ine;re ?OOt a(;'gtv;"é? t?[h'QStatl)lua de[vl\;:;org?:]nt slicing programmers are able to identify bugs more
g " precisely and at a much earlier stage.

Furthermore, multithreaded applications or
applications producing incorrect behavior only unde In this article we show two different methods for
heavy load often may not be debugged correctly ongenerating source code statement level runtimedrac
for applications hosted by the Microsoft .NET

; . . Framework 2.0. In their current form our solutions
this work for personal or classroom use is gramtédout
fee provided that copies are not made or distribute are incompatible with older versions (1.0, 1.1ytwf
profit or commercial advantage and that copies tesr -NET Framework but they can be ported back. None
notice and the full citation on the first page. Topy Of our methods requires the modification of the
otherwise, or republish, to post on servers oethistribute original source code nor the Runtime. Consequently,
to lists, requires prior specific permission andidee. these solutions do not depend on either Rotor (the
Shared Source implementation of the .NET

Generating and analyzing runtime traces for large
scale enterprise applications is a common task to
investigate the cause of arising malfunctions and
accidental crashes.

Permission to make digital or hard copies of alpart of

.NET Technologies 2006
Copyright UNION Agency — Science Press, Framework), Mono, or any other open source
Plzen, Czech Republic. software.

* Supported by GVOP-3.2.2.-2004-07-0005/3.01

None of the methods requires the installation ef th

development tools or the Microsoft .NET Framework Sg;n:gcgr
SDK on the target machine, and since .NET is a

cross-language programming environment, they can ¢

be used to generate trace for programs writtemyn a S
.NET programming language. r DI Wi
The first trace generating method uses the .NET

Debugger which we presented in [P6c05] in order to
utilize it in our dynamic slicing algorithm, whildne
second approach exploits the capabilities of tHET.N Figure 1: CLR Debugging architecture

Profiling API and IL code rewriting [Mik03]. It Wil jnto applications through Active Scripting [Pell].
clear up that only the second method is suitable fo NET Debugging Services is not only able to debug
large scale multithreaded applications, and thet fir every code compiled to IL written in any high level
method is sufficient only for toy programs. language, but it also provides debugging capassliti

In the next section we describe the main concepts a for all modern Object Oriented languages.

the architecture of th&lET Debugging and Profiling The .NET CLR supports two types of debugging
Infrastructure. In the 3" section we will describe the modes: out-of-process and in-process.

method that uses theéNET Debugger to generate
trace, while in the 4 section the second solution
based on theNET Profiler and IL code rewriting))
technique will be presented. In thd Section we In-process debuggers are used for inspecting tfe ru
compare these methods and present performancdme state of an application and for collecting
figures with different applications. We primarily Profiling information. These kinds of debuggers
focus on tracing statements of the original source (Profilers) do not have the ability to control the
code that appear in the execution path, and will no Process or handle events like stepping, breakpoints
give detailed description on how to identify vatey ~ ©tC-

However, in the last section we show how the The CLR Debugging Services are implemented as a
prepared solutions can be complemented to identifyset of some 70+ COM interfaces, which include the

Profiler

Out-of-process debuggers run in a separate process
providing common debugger functionality.

variables. design-time application, the symbol manager, the
publisher and theprofiler.
2. .NET DEBUGGING AND The design-time interface is responsible for handling
PROFILING INFRASTRUCTURE debugging events. It is implemented separated from

the CLR while the host application must reside in a
different process. The application has a separate
thread for receiving debugger events that run & th

context of the debugged application. When a debug
event occurs (assembly loaded, thread started,

All 20+ .NET languages compile to an intermediate
language code called Common Intermediate
Language (CIL) or simply Intermediate Language
(IL). The compiled code is organized into assemblies. X e
Assemblies are portable executables - similar te di Preakpoint reached, etc.) the application haltstaad

- with the important difference that assemblies are déPugger thread notifies the debugging service

populated with .NET metadata and IL code instead of rough callback functions.

normal native code. The .NET metadata holds The symbol manager is responsible for interpreting
information about the defined and referenced the program database (PDB) files that contain data
assemblies, types, methods, class member variablessed to describe code for the modules being
and attributes [ECMA]. IL is a machine-independent, executed. The debugger also uses assembly metadata
programming language-independent, low-level, that also holds useful information described earlie
assembly-like language using a stack to transfex da The PDB files contain debugging information and are
among IL instructions. The IL code is jitted by the generated only when the compiler is explicitly fic
.NET CLR (Common Language Runtime) to to do so. Besides enabling the unique identificatib
machine-dependent instructions at runtime. program elements like classes, methods, variables

With the release of .NET, a new Debugging API has @nd statements, the metadata and the program
also been introduced in the Microsoft world. Script database can also be used to retrieve their ofigina
engines can now compile or interpret code for the POSition in the source code.

Microsoft Common Language Runtime (CLR) The publisher is responsible for enumerating all
instead of integrating debugging capabilities digec running managed processes in the system.

The profiler tracks application performance and In the implementation first we create the process t
resources used by running managed processes. Thee run but do not start it. A Debugger event isedi
profiler runs in-process of the inspected applarati at every module load. When the module containing
and can be used to handle events like module andhe user entry point (Main method) is loaded weaset
class loading/unloading, jitting, method calls, ®ge breakpoint at this entry point. After loading the
related to exceptions and garbage collection process and setting the breakpoint we let the

performance. application run. At this point the process is altyua

created and th@©nCreateProcess event is raised by

3. .NET DEBUGGER WAY TO the Debugger. In the handler of this event we Iset t
INSTRUMENT APPLICATIONS state of the application being debugged to running

and start a while loop which is allowed to run whil

, . the application is alive. When the breakpoint
To employ theDebugger first we set a breakpoint to previously set is encountered th@nBreakPoint

the entry point of our application and we step glon debug event is raised. In the handler of this debug

eflch.exedcutt)lng _statement tyntll the emlj. The step (o event anAutoResetEvent called eventComplete is set
S e_p-m)_ ebugging operation goes along SeqUeNnce,,q \ye \yaijt forventModtate to be set. The handler
points in the original source code. Sequence points

f lete D ly th
which can be identified using metadata and theo OnStepComplete Debugger event does exactly the

o o same.
program database divide the statements in high-leve) _
programming languages. Afterwards the while loop does the following three

The CLR Debugger AP callelCorDebug [Stall] is 9% o
implemented by native COM interfaces. It can be 1. Waits for theeventComplete event which is
directly reached from managed or unmanaged code set by the Debugger event handlers

but there are also higher level managed wrapper 2. doStepin operation is called as described later
classes used by MDbg [Stall], the managed debugger

part of the Microsoft .NET Framework 2.0 SDK with _ -
full source code. Between setting theventComplete event and waiting

for the eventModSate event thedoSepln method

Using t.hese mterches we can start a process foruns which requires/sets the following informatn
debugging and register our managed or unmanage very step:

callback functions. As mentioned earlier, querying)))
run-time information of program variables is anothe 1. The IL instruction pointer

3. Sets theeventModSate event

important application. 2. The current function token and module
The structure of our solution: 3. Which sequence point belongs to the current IL
1. Low level managed COM Wrapper instruction
2. High level managed API of the previous 4. The target of the next step
3. Application employing the previous to generate The IL instruction pointer, the function token ahet
runtime execution trace module can be easily queried from tBerFrame

object which can be queried from the current thread
The sequence points are required to output thelctu
source line and source column to the trace and to
define the next step using ti8epRange method of
The low level managed COM Wrapper®(layer) CorSepper. The sequence points and the target of the
represents a COM marshaling code that is usedlto ca next step are static properties, therefore we cache
native Debugging API functions and is written in IL them so that they can be queried by the
It resides in the corapi2 folder in MDbg's souroeet GetSeguencePoints and GetRanges method of the

The high level managed API1'(layer) provides an qurrentla/mboIMethod inte.rface according!y. At the
easy-to-use higher level managed wrapper to thefirst a}nd last sequence point of.each functionoged
underlying layer and it is written in C# 2.0. function enter and leave event in the trace.
Sometimes it uses properties instead of methodks, an Unfortunately, this approach is not able to colyect
dispatches native debugging events as managetandle multithreaded application because it is not
events. It resides in the corapi folder of MDbg's possible to step from one thread to another and the
source tree. debugger does not notify us about thread switches.

Our solution based on these APIs can be downloaded
from http://avalon.inf.elte.hu/src/netdebug/

The F' and the ¥ layer of our solution is not
implemented by us rather we borrowed it from MDbg
that is freely usable and provided by Microsoft.

4. NET PROFILERWAY TO represents the unique function identifier and the

INSTRUMENT APPLICATIONS action code (1 for E(nter), 2 for L(eave)). Sinbe t
tracer is prepared for multithreaded applications,

)) ~lock on a static object and output the unigue managed
Basically, this approach explores all sequencetpoin thread identifier at every step. At intra-function

calls defined in an outer assembly at every se@Ienc jqentifier or action code.

point at IL code level [Mik03].

The .NET Profiler provides a COM interface called
ICorProfilerCallback2 exposing a set of callbacks
which can be implemented as a COM class. The
implementer is not allowed to use any managed
programming language, otherwise the Profiler would
profile itself. Consequently we have chosen the C++
language to demonstrate this approach.

We have used some other COM interfaces also like .

ISymUnmanagedReader, 1SymUnmanagedMethod, Through the Def|neA$emnyR¢f method of the
) . IMetaDataAssemblyEmit interface, the

IMetaDatalmport and ICorProfilerinfo2 while the finETYDEREBYN d the DefineMember Ref

standard classes implementing these interfaces werd€fineType yName and the DefineMember

instantiated using Microsoft's ATL (Active Template methods o MetaDataEmit2 mteyface we are able to
Library). add these references to the in-memory metadata of

assemblies and receive thaken values. When

From the 70+ Profiler events provided by the adding these references they are specified simply b
ICorProfilerCallback2 interface we have used only their names, the function token is used to call the
two: ModuleLoadFinished andClassLoadFinished. belonging function at the corresponding sequence

points.

If we intend to call a method placed in an outer
module we have to reference the assembly containing
that method, the class and the method itself. We
decided not to modify the original program in any
way so we have to add these references to the in-
memory metadata of every assembly at runtime. The
best place to do this is theloduleLoadFinished
Profiler event.

4.1. Tracing Methods. | mplementation

and Referencing 4.2. Internal Representation of Native

In this section we discuss the tracing methodsnee a .NET Primitives

using, how they log and the way we reference them. In this section we will give a general overviewtoé
internal representation of .NET methods, IL

We created a module assembl called . . . :
(Y) instructions and Exception Handling Clauses

TracerModule and placed a static class callB@cer

in it containing only static methods. [Mik03].
. A ‘ . . 4.2.1. Internal representation of .NET methods
public static void DoFunc(uint startLine,
uint startColumn, uint endLine, uint endColumn, Every .NET method has a header, IL code and may
g VO T, G) have extra padding bytes to maintain DWORD
try alignment. Optionally, it may have an SEH
lock (lockObj) (Structured Exception Handling) header and
. Exception Handling Clause.
char act= E' ;
ot BCton=2) Tiny method FAT method
swWriteLine("{6}T{SHANO}{L}-{21(3)"
startLine, startColumn, endLine,
endColumn, act, functionID,
Thread .CurrentThread.ManagedThreadId);
}
catch {}
L Heade
Listing 1: Trace method IL Code
.. . SEH Heade
Listing 1 illustrates the trace method executed at Ex. Hand. Clauss
every method entry (first sequence point executed) Paddiny byte
and leave (last sequence point, which is always Figure 2: Method formats
executed unless exception has been thrown). A .NET method can be ifiiny and inFat format. A

Tiny method is smaller than 64 bytes, its stacktldep
does not exceed 8 slots, contains no local vasable
SEH header and exception handlers. Fat methods

The first four parameters represent the positiothef
sequence point in the source code, the fifth pat@me

overrun one or more of these criterions. 2. Upgrading method and instruction format

3. Insertion of instrumentation code to the IL code-

4.2.2. IL instruction types
flow

IL instructions can be divided into several catéggpor
based on the number and type of parameters they use 4.

- have no parameter (dup: duplicates the element 5,
on top of the stack; Idc.i4.-1,...ldc.i4.8: load an
integer on stack (-1,...8))

- has one integer (8, 16, 32, 64 bits long)
parameter (Idc.i4 <int>: load the integer
specified by <int> on stack; br <param>, br.s
<reloff>: long or short jump to the relative
address specified by <reloff>)

Recalculating offsets and lengths
Storing new representation in binary format

4.3.1. Parsing binary method data
At first we determine the sequence points of the
method being parsed using tla&etSequencePoints
method oflSymUnmanagedMethod. This procedure
determines the IL- and original source code-level
start and end offsets for every sequence point. The
first byte of the header describes whether the oteth
- has one token parameter (call <token>: calls theis tiny or fat, the function is parsed using this
method specified by <token>; box <token>: box information.
a value type with type <token> into an objeCt; The || .jevel offsets of sequence points were
dild <token>: load the field specified by getermined previously, now the binary data haseto b
<token> of the stack-top class on stack) assigned to them and the IL instructions have to be
- multi-parameter instructions (switch <count> identified based on the binary data at every sexpien
<reloffl>...<reloffcount>: based on the stack- point. Every category of IL instructions featured i
top value representing the relative offset 4.2.2 is able to parse itself and determine its
parameter index jumps to the chosen relative parameters (integer value, token value, multiple
offset) parameters). Furthermore it can also generate doth
human readable and a binary representation (along

4.2.3. Exception Handling Clauses with its length) of it.

Every Fat method can have one or more exception
handlers. Every EHC (Exception Handling Clause) {S‘a“c
has a header and specifiestitsandhandler starting
(absolute) offset and length. An EHC can be also in
Tiny andFat format based on the number of bytes the
offset and length properties are used to describe.
Obviously each EH offset and length specifies a *
sequence point beginning and ending position in the
IL code-flow.

bool IsFirstLess(int valuel, int value2)

if (valuel < value2)

Console .WriteLine(
return true ;

"Yes, first is less");

return false ;

Listing 2: Simple C# Method

Consider the simple method in Listing 2. In Table 1
4.3. Let the Game Begin: IL Code the corresponding sequence points are shown
Rewriting identified by their IL offset, the start and endsets

Our goal is to change the IL Code of methods beforePY line and column numbers.

they are jitted to native code. We have chosen thel Index IL offset Start offset End offset
ClassLoadFinished Profiler event to perform this 0 0 25.1 252
operation because in this early stage we are able t[™ 4 1 26,° 26,27
enumerate all methods (with th&numMethods 2 9 Oxfeefee,| Oxfeefee,|
method ofIMetaDatalmport interface) of the class 3 12 27.% 27,2
just loaded and rewrite the IL code of a whole thunc 4 13 28,7 28,47
of methods. The binary data of a method can be|] 5 24 29,7 29,1¢
retrieved by the GetlILFunctionBody method of 6 28 31,2 31,1¢
ICorProfilerInfo2. After IL code rewriting, necessary 7 32 32,1 32,2

space for the new binary data can be allocatedyusin
the Alloc method oflMethodMalloc and the binary

Table 1: Sequence Point Offsets

Sequence point at index 2 petted FeeFee does not
have a real source code level offset just helptous
jump out if the predicate fails.
Slng]e_-method blngry df"‘ta qperatlons and IL code The IL code in Listing 4 illustrates the internal
rewriting can be divided into five steps: representation of method in Listing 2. The numbgrin
1. Parsing binary data and storing it in custom data on the left indicates the IL offsets while the narb
structures right to the branch instructionsbrfrue.s, br.s)

data can be set with tHgetILFunctionBody method
of ICorProfilerInfo2.

represents absolute target offset, relative tastjsét, and stored in the same type of container where the
target sequence point and target instruction iratex original instructions are stored.

the target sequence point. Parametetsisf andcall The parameters of the method to be called are tbade
instructions are of type string and functions taken 4, the stack using thédc.i4 instruction (opcode
respectively. The absolute target offset of branch 0x20) in order of parameters and theken ID of
instructions identified by target IL instructionsh&o method is given as the parametercalfl instruction

be calculated from the instruction offset and the (opcode 0x28). The possible instruction (Idc.idt.,

relative target offset. Idc.i4.2) at index 25 surely having a one byte ajgco
If exist, the EHCs are also parsed [Mik03]. (0x17 or 0x18) loads 1 for enter or 2 for leave on
stack respectively.
0: nop
1:Idarg O BYTE insertFuncinst[31];
2:ldarg 1 insertFuncinst[0] = 0x20; /Ndc.i4, start line
3relt insertFunclnst[5] = 0x20; /lidc.i4, start column
5:1dc.i4 0 insertFuncinst[10] = 0x20; /Ndc.i4, end line
6: ceq insertFuncinst[15] = 0x20; /Nldc.i4, end column
8: stloc 1 insertFuncinst[20] = 0x20; /l'\dc.i4, func. id
9: Idloc 1 _ insertFuncinst[25] = Ox0; /l'ldc.i4.1 or Idc.i4.2
10: brtrue.s 28 (16) [tsp: 6, til: 0] insertFuncinst[26] = 0x28; I/ call
12: nop *((DWORD *)(insertFuncinst+27)) =
13: Idstr 1879048193 tracerDoFuncMethodTokenlD;
18: call 167772181 o . .
giz o Listing 3: Binary representation of trace method call
. lac.i
25: stloc 0 i i
26: br.s 32 (4) [tsp: 7, til: 0] The above parameters are dynamically substituted
33 Ir{?:.i400 depending on the data of the current sequence point
e () [tsp: 7, til: 0] and a uniq_ue function_ ID (generated by an own
32:ldloc 0 counter) while the function token can be presetesin

it is module (and not function) dependent.

Listing 4: Human Readable Output of Internal In the intra-function sequence points only the ddta

Method Fepresent.atic . sequence points is substituted and the thread ID is
4.3.2. Upgrading method and instruction format queried at each step, the function ID and other

In case offiny method format the header is upgraded jnformation are irrelevant here. The substituted
to represent aFat format because we can easily pingry data is parsed and converted to IL instonsti
overrun the limitations ofiny format. and inserted into the beginning of the IL code
The short branch instructions (brtrue.s, br.s, lnge, container of every sequence point.

etc.) are converted to their long pairs (brtrue, br 4.3.4. Recalculating offsets and lengths
bge.un, etc.) because we cannot guarantee that thg'. A :

.) . L ince the IL instruction flow is altered by insegdi
relative -branch lengths will remain within - the extra instructions the target offsets):Jf brgmch

numeric representation barriers after inserting esom . . :
instrumentation instructions between the branch |nstruct|ons_ and the st‘_e\rt offset and length provger
of Exception Handling Clauses have to be

instructions and their targets.
recalculated.

Tiny Exception Handling Clauses are also upgraded
to store offset and length values in DWORD format
because the limitation of original WORD (offset)dan
BYTE (length) can be easily overrun after
instrumentation code insertion.

A target offset of a branch instruction can pomthe
first instruction of a sequence point and can ptint
other than the first instruction. If the originadabch
target offset pointed to the first instruction of a
sequence point then we change the target offgaeto
4.3.3. Instrumentation code insertion newly created first instruction in order to run
Now we have theToken IDs of Trace methods, instrumentation after jumps also. If the original
queried the IL and source code level offsets andbranch target pointed to other then the first
lengths of sequence points and converted the binanyinstruction then we leave it to target to the same
data to upgraded IL instruction flow. Now we instruction as before.

examine how the methods callBwFunc (in Listing Any IL instruction in our representation can caétal
1) and its pair calleDoTrace can be parameterized s |ength, so we can easily recalculate the ndsets

and called. While DoFunc is intended to use at of || instructions and sequence points for the bran
method enter and leave, DoTrace handles intra-targets also.

function sequence points. . :
a P The offset and length properties of Exception

As we have mentioned earlier, IL instructions are Handling Clauses can be calculated similarly.
able to parse themselves therefore we create a BYTE
array to store binary data which can be easilyquhrs

0: Idc.i4 25 112: Idc.i4 47
5:ldc.i4 1 117: call 167772194
10: Idc.i4 25 122: dstr 1879048193
15: Idc.i4 2 127: call 167772181
20: Idc.i4 3 132: nop

25: Idc.i4 1 133: Idc.i4 29

26: call 167772195 138: Idc.i4 7

31: nop 143: Idc.i4 29
32:1dc.i4 26 148: Idc.i4 19
37:1dc.i4 3 153: call 167772194
42:1dc.i4 26 158: Idc.i4 1

47: 1dc.i4 23 159: stloc O

52: call 167772194 160: br 197 (32)
57:Idarg 0 165: Idc.i4 31

58: Idarg 1 170: Idc.i4 3

59: clt 175: Idc.i4 31

61: Idc.i4 0 180: Idc.i4 16

62: ceq 185: call 167772194
64: stloc 1 190: Idc.i4 0

65: Idloc 1 191: stloc O

66: brtrue 165 (94) 192: br 197 (0)
71:Idc.i4 27 197: Idc.i4 32

76: Idc.i4 3 202: Idc.i4 1

81: Idc.i4 27 207: Idc.i4 32

86: Idc.i4 4 212:|dc.i4 2

91: call 167772194 217:1dc.i4 3

96: nop 222:|dc.i4 2

97: Idc.i4 28 223: call 167772195
102: Idc.i4 7 228: Idloc O

107: Idc.i4 28 229: ret

Listing 5: Altered IL code of IsFirstLess method
4.3.5. Soring the instrumented method

Now we have the instrumented method represented in

our data structures. The job is to store the dadialla
code back in binary format following the
specification. The binary data can be restoreché¢o t
CLR by using the method described in 4.3.

5. COMPARISON OF METHODSAND
TEST RESULT

In the previous sections we have presented two
different methods for generating runtime execution
trace of .NET-based applications.

None of the methods require us to modify the
applications being tested. Both methods can be
accomplished to produce trace information about the
value of accessed variables of any type, and ifyenti
reference variables. With the help of the Debugger,
reference variables can be identified by their ©bje
Id, but obtaining this Id requires many time
consuming operations [Stall]. Using the Profildit’s
code rewriting capabilities it is also possible to
identify reference variables, and much faster than
with the Debugger. A value type variable is always
identifiable by the sequence point occurrence i wa
created in.

The Debugger is unable to notify us about thread
switches and the step-in operation is unable tgpjum
through threads therefore it is not possible todhan
multithreaded applications. To the contrary, ughnme
Profiler we are able to log the thread’'s ID at gver
sequence point of the application.

In order to make the Debugger work we have to
attach it to the process we intend to instrumewt. T

use the Prdfiler, it is required to register itaa€OM
component using theegsvr32 command and set two
environment variables in the process, user or Byste
context to enable the Profiler in that context. Set
Cor_Enable Profiling to Ox1 andCor_Profiler to the
GUID or ProglD of our object implementing the
ICorProfilerCallback2 interface.

We demonstrate the performance of the methods
through four applications. The first two use ordgyf
class library calls so they are intended to meathee
pure performance. The third application uses much
more but very short, while the last one uses maidy a
long class library calls.

The character of the four applications:

1. Counter is a simple application that calculates the
sum of numbers from 1 to 10000 and prints a dot
at each step on the screen by implementing the
addition in a separate function and uses only few
class library calls, but a lot of integer operasion
which are implemented by native IL instructions.

ITextSharp is an open source PDF library. In our
test we created a basic PDF document. It uses
very few class library calls and a lot of string
operations which are implemented by native IL
instructions.

DiskReporter recursively walks the directory tree
from a previously specified path and creates an
XML report. In our test 3141 directories and

12257 files were enumerated. It uses more, but
short library calls (xml node and attribute

operations, file property query).

2.

3.

4. Mohican is a small HTTP server using multiple
threads for serving requests. In our test Mohican
served a 1.3MB HTML document referencing 20
different pictures. It uses many and long class

library calls (mainly network and file access).

Profiler
trace

00:01.34
02:33:50

00:11.74

Debugger

No. of SPs|
trace

App. name |Normal rur

Counter | 00:00.1
ITextSharp00:01:02

Disk- |00:05.46
Reporte

Mohican

01:53:92
98:11.32

24:04.42

110,034
2,825,242

316,196

00:01.3Y n/a |00:01.89175,434
Table 2: Test results

Table 2 shows the performance comparison of the
normal application run, the run under the control o
the Debugger and the Profiler in mm:ss.ii formdie T
last column contains the number of source code
statements executed.

It can be seen that applications containing fevgscla
library calls perform poor under the control of fot
the Debugger and the Profiler, while applications
containing many class library calls perform better.

ioixi

= -
Load — [5358 =

S ourceitohicanyMohicanCore\RequestParsercs ©\SourceiMohicanitohicanCommon\ResponseBase.cs I S ource\MohinaniM ohicanCore\Respor 4 | |

Time3pan diff = DateTime.Now.Subtract(StartTime) ;
if(diff.TotcalMilliseconds > ConfigInformation.3endTimedutInMilliSeconds)

return SendRetVal.TimeOutExceeded;
¥

Fendielect.Clear(]:
Sendfelect.iddin_3Socker):

try{Socket.Select{null, SendSelect, null, 500%1000);}
catchireturn SendRet¥al.SocketException:} J

if(%endfelect.Count == 1}
int sentnow = 0;

try
catch {return %endRetVal.3ocketException:}

if(sentnow > 0)
dtartTime = DateTime.Naow:

TotalSent+= sentnow;
}

¥

H

catch
{
return SendRetVal.UnknownException;

}

return SendRet¥al.OK:
5 -
«| | JIJ

Figure 3: Visualizing the trac
Applications containing long class library callgé which we currently do not support like exceptions,
any real world enterprise application) perform well nested classes, anonymous methods, generic types
under the control of the Profiler. Unfortunatelyeth and methods, application domains.
Debugger could not be tested (because of
multithreading). 7. REFERENCES

The runtime trace generated by the Profiler can be)
visualized using a Winform application as shown in [Agrola] H. Agrawal and J. R. Horgan. Dynamic
Figure 3 (the trace of Mohican). The code fragment ~ Program slicing. In SIGPLAN Notices No. 6,
in green (darker) shows the statement executed at a _Pages 246-256, 1990.)
arbitrary step of the application. Statements ifoye [Bes0la] A. Beszedes, T. Gergely, Zs. M. Szabg, J.

(lighter) have already been executed, while white Csirk, T. Gyiméthy. Dynamic slicing method for
statements have not yet been traversed. maintenance of large C programs, CSMR 2001,
pages 105-113.

6. CONCLUSION AND FURTHER [ECMA] ECMA C# and Common Language
WORK Infrastructure Standards
http://msdn.microsoft.com/netframework/ecma/

. o [Mar03a] K. Maruyama, M. Terada, Timestamp
In this paper we have shown how to utilize the .NET Based Execution Control for C and Java

Debugging and Profiling Infrastructure to generate Programs, AADEBUG, 2003

r“”tl'me de’t‘)e‘;r‘:“o” trt]rage of large appncapodr;; a”O: [Mik03] A. Mikunov, Rewrite MSIL Code on the Fly
analyzed LOth method using programs Of dIferent = .4, he NET Framework Profiling API, MSDN

characteristic. We can conclude that although the magazine, issue September 2003,

method based on. thg Debugger is .ea3|er to http://msdn.microsoft.com/msdnmag/issues/03/0
implement, the Profiler is much more suitable for 9/NETProfilingAPI/

tracing large scale, multithreaded applications. [P6c05] K. Pocza, M. Biczo, Z. Porkolab. Cross-
Therefore, we plan to advance on the Profiler way. language Program Slicing in the .NET
The first and most important thing is to extend our Framework, Journal of .NET Technologies, 2005
framework to identify variables in the order asdbc [Stalll Mike Stall's .NET Debugging Blog,
variables, method arguments and class variables http://blogs.msdn.com/jmstall2004-2006

appear. We can insert instrumentation code aftgr an [Tip95a] F. Tip, A survey of program slicing
variable load and before any variable store opmmnati technigues. Journal of Programming Languages,
The on-stack-top variables can be duplicated by the — 3(3):121-189, Sept. 1995.

dup IL instruction in order to consume them in the [zha03a] X. Zhang, R. Gupta, Y. Zhang. Precise
parameter of a trace method call. dynamic slicing algorithms. Proc. International

There are some language elements and CLR features Conference on Software Engineering, pages 319-
329, 2003

