
* Supported by GVOP-3.2.2.-2004-07-0005/3.01

Towards Effective Runtime Trace Generation
Techniques in the .NET Framework *

Krisztián Pócza

Eötvös Loránd University

Fac. of Informatics, Dept. of
Programming Lang. and Compilers

Pázmány Péter sétány 1/c.
 H-1117, Budapest, Hungary

kpocza@kpocza.net

Mihály Biczó
Eötvös Loránd University

Fac. of Informatics, Dept. of
Programming Lang. and Compilers

Pázmány Péter sétány 1/c.
 H-1117, Budapest, Hungary

mihaly.biczo@axelero.hu

Zoltán Porkoláb
Eötvös Loránd University

Fac. of Informatics, Dept. of
Programming Lang. and Compilers

Pázmány Péter sétány 1/c.
 H-1117, Budapest, Hungary

gsd@elte.hu

ABSTRACT
Effective runtime trace generation is vital for understanding, analyzing, and maintaining large-scale applications.
In this paper two cross-language trace generation methods are introduced for the .NET platform. The non-
intrusive methods are based on the .NET Debugging and Profiling Infrastructure; consequently, neither additional
development tools, nor the .NET Framework SDK is required to be installed on the target system. Both methods
are applied to a test set of real-size executables and compared by performance and applicability.

Keywords
Runtime trace generation, .NET, Debugger, Profiler, program slicing

1. INTRODUCTION

Generating and analyzing runtime traces for large
scale enterprise applications is a common task to
investigate the cause of arising malfunctions and
accidental crashes.

In order to prepare reliable applications, it is
important to investigate programs using a debugger
application, and examine the application log or the
event log of the operating system so that erroneous
instructions and variables getting incorrect values can
be detected. However, there are many situations
where a simple debugger fails to find the erroneous
instructions and variables. One common example is
when the error occurs in a production environment
where we are not allowed to install a development
environment to detect the bug [Mar03a].
Furthermore, multithreaded applications or
applications producing incorrect behavior only under
heavy load often may not be debugged correctly on

the development machines. What makes things even
more complicated is that incompatibility issues might
also arise in the case of programs and components
that run on a deployment server or a client computer.
Further problematic situations include cases when the
deployment servers are in a Network Load Balancing
(NLB) Cluster, or the isolation level on the IIS web
server is too restrictive.

The most common research area where low level
runtime traces are used in the academic world is
dynamic program slicing [Agr91a, Bes01a, Póc05a,
Tip95a, Zha03a]. The result of program slicing can
also be used in the industry. The original goal of
program slicing was to map mental abstractions made
by programmers during debugging to a reduced set of
statements in source code. With the help of program
slicing programmers are able to identify bugs more
precisely and at a much earlier stage.

In this article we show two different methods for
generating source code statement level runtime traces
for applications hosted by the Microsoft .NET
Framework 2.0. In their current form our solutions
are incompatible with older versions (1.0, 1.1) of the
.NET Framework but they can be ported back. None
of our methods requires the modification of the
original source code nor the Runtime. Consequently,
these solutions do not depend on either Rotor (the
Shared Source implementation of the .NET
Framework), Mono, or any other open source
software.

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

.NET Technologies 2006
Copyright UNION Agency – Science Press,
Plzen, Czech Republic.

None of the methods requires the installation of the
development tools or the Microsoft .NET Framework
SDK on the target machine, and since .NET is a
cross-language programming environment, they can
be used to generate trace for programs written in any
.NET programming language.

The first trace generating method uses the .NET
Debugger which we presented in [Póc05] in order to
utilize it in our dynamic slicing algorithm, while the
second approach exploits the capabilities of the .NET

Profiling API and IL code rewriting [Mik03]. It will
clear up that only the second method is suitable for
large scale multithreaded applications, and the first
method is sufficient only for toy programs.

In the next section we describe the main concepts and
the architecture of the .NET Debugging and Profiling
Infrastructure. In the 3rd section we will describe the
method that uses the .NET Debugger to generate
trace, while in the 4th section the second solution
based on the .NET Profiler and IL code rewriting
technique will be presented. In the 5th section we
compare these methods and present performance
figures with different applications. We primarily
focus on tracing statements of the original source
code that appear in the execution path, and will not
give detailed description on how to identify variables.
However, in the last section we show how the
prepared solutions can be complemented to identify
variables.

2. .NET DEBUGGING AND
PROFILING INFRASTRUCTURE

All 20+ .NET languages compile to an intermediate
language code called Common Intermediate
Language (CIL) or simply Intermediate Language
(IL). The compiled code is organized into assemblies.
Assemblies are portable executables - similar to dll’s
- with the important difference that assemblies are
populated with .NET metadata and IL code instead of
normal native code. The .NET metadata holds
information about the defined and referenced
assemblies, types, methods, class member variables
and attributes [ECMA]. IL is a machine-independent,
programming language-independent, low-level,
assembly-like language using a stack to transfer data
among IL instructions. The IL code is jitted by the
.NET CLR (Common Language Runtime) to
machine-dependent instructions at runtime.

With the release of .NET, a new Debugging API has
also been introduced in the Microsoft world. Script
engines can now compile or interpret code for the
Microsoft Common Language Runtime (CLR)
instead of integrating debugging capabilities directly

into applications through Active Scripting [Pell].
.NET Debugging Services is not only able to debug
every code compiled to IL written in any high level
language, but it also provides debugging capabilities
for all modern Object Oriented languages.

The .NET CLR supports two types of debugging
modes: out-of-process and in-process.

Out-of-process debuggers run in a separate process
providing common debugger functionality.

In-process debuggers are used for inspecting the run-
time state of an application and for collecting
profiling information. These kinds of debuggers
(profilers) do not have the ability to control the
process or handle events like stepping, breakpoints,
etc.

The CLR Debugging Services are implemented as a
set of some 70+ COM interfaces, which include the
design-time application, the symbol manager, the
publisher and the profiler.

The design-time interface is responsible for handling
debugging events. It is implemented separated from
the CLR while the host application must reside in a
different process. The application has a separate
thread for receiving debugger events that run in the
context of the debugged application. When a debug
event occurs (assembly loaded, thread started,
breakpoint reached, etc.) the application halts and the
debugger thread notifies the debugging service
through callback functions.

The symbol manager is responsible for interpreting
the program database (PDB) files that contain data
used to describe code for the modules being
executed. The debugger also uses assembly metadata
that also holds useful information described earlier.
The PDB files contain debugging information and are
generated only when the compiler is explicitly forced
to do so. Besides enabling the unique identification of
program elements like classes, methods, variables
and statements, the metadata and the program
database can also be used to retrieve their original
position in the source code.

The publisher is responsible for enumerating all
running managed processes in the system.

Symbol
Manager

Design time

CLR Publisher

Profiler

Figure 1: CLR Debugging architecture

The profiler tracks application performance and
resources used by running managed processes. The
profiler runs in-process of the inspected application
and can be used to handle events like module and
class loading/unloading, jitting, method calls, events
related to exceptions and garbage collection
performance.

3. .NET DEBUGGER WAY TO
INSTRUMENT APPLICATIONS

To employ the Debugger first we set a breakpoint to
the entry point of our application and we step along
each executing statement until the end. The step (or
step-in) debugging operation goes along sequence
points in the original source code. Sequence points
which can be identified using metadata and the
program database divide the statements in high-level
programming languages.

The CLR Debugger API called ICorDebug [Stall] is
implemented by native COM interfaces. It can be
directly reached from managed or unmanaged code
but there are also higher level managed wrapper
classes used by MDbg [Stall], the managed debugger
part of the Microsoft .NET Framework 2.0 SDK with
full source code.

Using these interfaces we can start a process for
debugging and register our managed or unmanaged
callback functions. As mentioned earlier, querying
run-time information of program variables is another
important application.

The structure of our solution:

1. Low level managed COM Wrapper

2. High level managed API of the previous

3. Application employing the previous to generate
runtime execution trace

The 1st and the 2nd layer of our solution is not
implemented by us rather we borrowed it from MDbg
that is freely usable and provided by Microsoft.

The low level managed COM Wrapper (1st layer)
represents a COM marshaling code that is used to call
native Debugging API functions and is written in IL.
It resides in the corapi2 folder in MDbg’s source tree.

The high level managed API (2nd layer) provides an
easy-to-use higher level managed wrapper to the
underlying layer and it is written in C# 2.0.
Sometimes it uses properties instead of methods, and
dispatches native debugging events as managed
events. It resides in the corapi folder of MDbg’s
source tree.

Our solution based on these APIs can be downloaded
from http://avalon.inf.elte.hu/src/netdebug/ .

In the implementation first we create the process to
be run but do not start it. A Debugger event is raised
at every module load. When the module containing
the user entry point (Main method) is loaded we set a
breakpoint at this entry point. After loading the
process and setting the breakpoint we let the
application run. At this point the process is actually
created and the OnCreateProcess event is raised by
the Debugger. In the handler of this event we set the
state of the application being debugged to running
and start a while loop which is allowed to run while
the application is alive. When the breakpoint
previously set is encountered the OnBreakPoint
debug event is raised. In the handler of this debug
event an AutoResetEvent called eventComplete is set
and we wait for eventModState to be set. The handler
of OnStepComplete Debugger event does exactly the
same.

Afterwards the while loop does the following three
things:

1. Waits for the eventComplete event which is
set by the Debugger event handlers

2. doStepIn operation is called as described later

3. Sets the eventModState event

Between setting the eventComplete event and waiting
for the eventModState event the doStepIn method
runs which requires/sets the following information at
every step:

1. The IL instruction pointer

2. The current function token and module

3. Which sequence point belongs to the current IL
instruction

4. The target of the next step

The IL instruction pointer, the function token and the
module can be easily queried from the CorFrame
object which can be queried from the current thread.
The sequence points are required to output the actual
source line and source column to the trace and to
define the next step using the StepRange method of
CorStepper. The sequence points and the target of the
next step are static properties, therefore we cache
them so that they can be queried by the
GetSequencePoints and GetRanges method of the
current ISymbolMethod interface accordingly. At the
first and last sequence point of each function we log a
function enter and leave event in the trace.

Unfortunately, this approach is not able to correctly
handle multithreaded application because it is not
possible to step from one thread to another and the
debugger does not notify us about thread switches.

4. .NET PROFILER WAY TO
INSTRUMENT APPLICATIONS

Basically, this approach explores all sequence points
in all methods of all classes and all modules of the
application being profiled and inserts trace method
calls defined in an outer assembly at every sequence
point at IL code level [Mik03].

The .NET Profiler provides a COM interface called
ICorProfilerCallback2 exposing a set of callbacks
which can be implemented as a COM class. The
implementer is not allowed to use any managed
programming language, otherwise the Profiler would
profile itself. Consequently we have chosen the C++
language to demonstrate this approach.

We have used some other COM interfaces also like
ISymUnmanagedReader, ISymUnmanagedMethod,
IMetaDataImport and ICorProfilerInfo2 while the
standard classes implementing these interfaces were
instantiated using Microsoft’s ATL (Active Template
Library).

From the 70+ Profiler events provided by the
ICorProfilerCallback2 interface we have used only
two: ModuleLoadFinished and ClassLoadFinished.

4.1. Tracing Methods: Implementation
and Referencing
In this section we discuss the tracing methods we are
using, how they log and the way we reference them.

We created a module (assembly) called
TracerModule and placed a static class called Tracer
in it containing only static methods.

Listing 1 illustrates the trace method executed at
every method entry (first sequence point executed)
and leave (last sequence point, which is always
executed unless exception has been thrown).

The first four parameters represent the position of the
sequence point in the source code, the fifth parameter

represents the unique function identifier and the
action code (1 for E(nter), 2 for L(eave)). Since the
tracer is prepared for multithreaded applications, we
lock on a static object and output the unique managed
thread identifier at every step. At intra-function
sequence points the trace method gets only the first
four parameters and does not output any function
identifier or action code.

If we intend to call a method placed in an outer
module we have to reference the assembly containing
that method, the class and the method itself. We
decided not to modify the original program in any
way so we have to add these references to the in-
memory metadata of every assembly at runtime. The
best place to do this is the ModuleLoadFinished
Profiler event.

Through the DefineAssemblyRef method of the
IMetaDataAssemblyEmit interface, the
DefineTypeRefByName and the DefineMemberRef
methods of IMetaDataEmit2 interface we are able to
add these references to the in-memory metadata of
assemblies and receive their token values. When
adding these references they are specified simply by
their names, the function token is used to call the
belonging function at the corresponding sequence
points.

4.2. Internal Representation of Native
.NET Primitives
In this section we will give a general overview of the
internal representation of .NET methods, IL
instructions and Exception Handling Clauses
[Mik03].

4.2.1. Internal representation of .NET methods
Every .NET method has a header, IL code and may
have extra padding bytes to maintain DWORD
alignment. Optionally, it may have an SEH
(Structured Exception Handling) header and
Exception Handling Clause.

A .NET method can be in Tiny and in Fat format. A
Tiny method is smaller than 64 bytes, its stack depth
does not exceed 8 slots, contains no local variables,
SEH header and exception handlers. Fat methods

public static void DoFunc(uint startLine,
uint startColumn, uint endLine, uint endColumn,
uint functionID, uint action)

{
 try
 {
 lock (lockObj)
 {
 char act = 'E' ;
 if (action == 2)
 act = 'L' ;
 sw.WriteLine("{6}T{5}{4}{0}:{1}-{2}:{3}" ,

startLine, startColumn, endLine,
endColumn, act, functionID,
Thread .CurrentThread.ManagedThreadId);

 }
 }
 catch { }
}

Listing 1: Trace method
Header
IL Code
SEH Header
Ex. Hand. Clauses
Padding byte

Tiny method FAT method

Figure 2: Method formats

overrun one or more of these criterions.

4.2.2. IL instruction types
IL instructions can be divided into several categories
based on the number and type of parameters they use:

- have no parameter (dup: duplicates the element
on top of the stack; ldc.i4.-1,…ldc.i4.8: load an
integer on stack (-1,…8))

- has one integer (8, 16, 32, 64 bits long)
parameter (ldc.i4 <int>: load the integer
specified by <int> on stack; br <param>, br.s
<reloff>: long or short jump to the relative
address specified by <reloff>)

- has one token parameter (call <token>: calls the
method specified by <token>; box <token>: box
a value type with type <token> into an object;
ldfld <token>: load the field specified by
<token> of the stack-top class on stack)

- multi-parameter instructions (switch <count>
<reloff1>…<reloffcount>: based on the stack-
top value representing the relative offset
parameter index jumps to the chosen relative
offset)

4.2.3. Exception Handling Clauses
Every Fat method can have one or more exception
handlers. Every EHC (Exception Handling Clause)
has a header and specifies its try and handler starting
(absolute) offset and length. An EHC can be also in
Tiny and Fat format based on the number of bytes the
offset and length properties are used to describe.
Obviously each EH offset and length specifies a
sequence point beginning and ending position in the
IL code-flow.

4.3. Let the Game Begin: IL Code
Rewriting
Our goal is to change the IL Code of methods before
they are jitted to native code. We have chosen the
ClassLoadFinished Profiler event to perform this
operation because in this early stage we are able to
enumerate all methods (with the EnumMethods
method of IMetaDataImport interface) of the class
just loaded and rewrite the IL code of a whole bunch
of methods. The binary data of a method can be
retrieved by the GetILFunctionBody method of
ICorProfilerInfo2. After IL code rewriting, necessary
space for the new binary data can be allocated using
the Alloc method of IMethodMalloc and the binary
data can be set with the SetILFunctionBody method
of ICorProfilerInfo2.

Single-method binary data operations and IL code
rewriting can be divided into five steps:

1. Parsing binary data and storing it in custom data
structures

2. Upgrading method and instruction format

3. Insertion of instrumentation code to the IL code-
flow

4. Recalculating offsets and lengths

5. Storing new representation in binary format

4.3.1. Parsing binary method data
At first we determine the sequence points of the
method being parsed using the GetSequencePoints
method of ISymUnmanagedMethod. This procedure
determines the IL- and original source code-level
start and end offsets for every sequence point. The
first byte of the header describes whether the method
is tiny or fat, the function is parsed using this
information.

The IL-level offsets of sequence points were
determined previously, now the binary data has to be
assigned to them and the IL instructions have to be
identified based on the binary data at every sequence
point. Every category of IL instructions featured in
4.2.2 is able to parse itself and determine its
parameters (integer value, token value, multiple
parameters). Furthermore it can also generate both a
human readable and a binary representation (along
with its length) of it.

Consider the simple method in Listing 2. In Table 1
the corresponding sequence points are shown
identified by their IL offset, the start and end offsets
by line and column numbers.

Index IL offset Start offset End offset

0 0 25,1 25,2
1 1 26,3 26,23
2 9 0xfeefee,0 0xfeefee,0
3 12 27,3 27,4
4 13 28,7 28,47
5 24 29,7 29,19
6 28 31,3 31,16
7 32 32,1 32,2

Table 1: Sequence Point Offsets

Sequence point at index 2 petted FeeFee does not
have a real source code level offset just helps us to
jump out if the predicate fails.

The IL code in Listing 4 illustrates the internal
representation of method in Listing 2. The numbering
on the left indicates the IL offsets while the numbers
right to the branch instructions (brtrue.s, br.s)

static bool IsFirstLess(int value1, int value2)
{
 if (value1 < value2)
 {
 Console .WriteLine("Yes, first is less");
 return true ;
 }
 return false ;
}

Listing 2: Simple C# Method

represents absolute target offset, relative target offset,
target sequence point and target instruction index at
the target sequence point. Parameters of ldstr and call
instructions are of type string and functions tokens
respectively. The absolute target offset of branch
instructions identified by target IL instruction has to
be calculated from the instruction offset and the
relative target offset.

If exist, the EHCs are also parsed [Mik03].

4.3.2. Upgrading method and instruction format
In case of Tiny method format the header is upgraded
to represent a Fat format because we can easily
overrun the limitations of Tiny format.

The short branch instructions (brtrue.s, br.s, bge.un.s,
etc.) are converted to their long pairs (brtrue, br,
bge.un, etc.) because we cannot guarantee that the
relative branch lengths will remain within the
numeric representation barriers after inserting some
instrumentation instructions between the branch
instructions and their targets.

Tiny Exception Handling Clauses are also upgraded
to store offset and length values in DWORD format
because the limitation of original WORD (offset) and
BYTE (length) can be easily overrun after
instrumentation code insertion.

4.3.3. Instrumentation code insertion
Now we have the Token IDs of Trace methods,
queried the IL and source code level offsets and
lengths of sequence points and converted the binary
data to upgraded IL instruction flow. Now we
examine how the methods called DoFunc (in Listing
1) and its pair called DoTrace can be parameterized
and called. While DoFunc is intended to use at
method enter and leave, DoTrace handles intra-
function sequence points.

As we have mentioned earlier, IL instructions are
able to parse themselves therefore we create a BYTE
array to store binary data which can be easily parsed

and stored in the same type of container where the
original instructions are stored.

The parameters of the method to be called are loaded
on the stack using the ldc.i4 instruction (opcode
0x20) in order of parameters and the Token ID of
method is given as the parameter of call instruction
(opcode 0x28). The possible instruction (ldc.i4.1, or
ldc.i4.2) at index 25 surely having a one byte opcode
(0x17 or 0x18) loads 1 for enter or 2 for leave on
stack respectively.

The above parameters are dynamically substituted
depending on the data of the current sequence point
and a unique function ID (generated by an own
counter) while the function token can be preset since
it is module (and not function) dependent.

In the intra-function sequence points only the data of
sequence points is substituted and the thread ID is
queried at each step, the function ID and other
information are irrelevant here. The substituted
binary data is parsed and converted to IL instructions
and inserted into the beginning of the IL code
container of every sequence point.

4.3.4. Recalculating offsets and lengths
Since the IL instruction flow is altered by inserting
extra instructions the target offsets of branch
instructions and the start offset and length properties
of Exception Handling Clauses have to be
recalculated.

A target offset of a branch instruction can point to the
first instruction of a sequence point and can point to
other than the first instruction. If the original branch
target offset pointed to the first instruction of a
sequence point then we change the target offset to the
newly created first instruction in order to run
instrumentation after jumps also. If the original
branch target pointed to other then the first
instruction then we leave it to target to the same
instruction as before.

Any IL instruction in our representation can calculate
its length, so we can easily recalculate the new offsets
of IL instructions and sequence points for the branch
targets also.

The offset and length properties of Exception
Handling Clauses can be calculated similarly.

BYTE insertFuncInst[31];
insertFuncInst[0] = 0x20; //ldc.i4, start line
insertFuncInst[5] = 0x20; //ldc.i4, start column
insertFuncInst[10] = 0x20; //ldc.i4, end line
insertFuncInst[15] = 0x20; //ldc.i4, end column
insertFuncInst[20] = 0x20; // ldc.i4, func. id
insertFuncInst[25] = 0x0; // ldc.i4.1 or ldc.i4.2
insertFuncInst[26] = 0x28; // call
*((DWORD *)(insertFuncInst+27)) =
 tracerDoFuncMethodTokenID;

Listing 3: Binary representation of trace method call

0: nop
1: ldarg 0
2: ldarg 1
3: clt
5: ldc.i4 0
6: ceq
8: stloc 1
9: ldloc 1
10: brtrue.s 28 (16) [tsp: 6, til: 0]
12: nop
13: ldstr 1879048193
18: call 167772181
23: nop
24: ldc.i4 1
25: stloc 0
26: br.s 32 (4) [tsp: 7, til: 0]
28: ldc.i4 0
29: stloc 0
30: br.s 32 (0) [tsp: 7, til: 0]
32: ldloc 0
33: ret

Listing 4: Human Readable Output of Internal
Method Representation

4.3.5. Storing the instrumented method
Now we have the instrumented method represented in
our data structures. The job is to store the data and IL
code back in binary format following the
specification. The binary data can be restored to the
CLR by using the method described in 4.3.

5. COMPARISON OF METHODS AND
TEST RESULT

In the previous sections we have presented two
different methods for generating runtime execution
trace of .NET-based applications.

None of the methods require us to modify the
applications being tested. Both methods can be
accomplished to produce trace information about the
value of accessed variables of any type, and identify
reference variables. With the help of the Debugger,
reference variables can be identified by their Object
Id, but obtaining this Id requires many time
consuming operations [Stall]. Using the Profiler’s IL
code rewriting capabilities it is also possible to
identify reference variables, and much faster than
with the Debugger. A value type variable is always
identifiable by the sequence point occurrence it was
created in.

The Debugger is unable to notify us about thread
switches and the step-in operation is unable to jump
through threads therefore it is not possible to handle
multithreaded applications. To the contrary, using the
Profiler we are able to log the thread’s ID at every
sequence point of the application.

In order to make the Debugger work we have to
attach it to the process we intend to instrument. To

use the Profiler, it is required to register it as a COM
component using the regsvr32 command and set two
environment variables in the process, user or system
context to enable the Profiler in that context. Set
Cor_Enable_Profiling to 0x1 and Cor_Profiler to the
GUID or ProgID of our object implementing the
ICorProfilerCallback2 interface.

We demonstrate the performance of the methods
through four applications. The first two use only few
class library calls so they are intended to measure the
pure performance. The third application uses much
more but very short, while the last one uses many and
long class library calls.

The character of the four applications:

1. Counter is a simple application that calculates the
sum of numbers from 1 to 10000 and prints a dot
at each step on the screen by implementing the
addition in a separate function and uses only few
class library calls, but a lot of integer operations
which are implemented by native IL instructions.

2. ITextSharp is an open source PDF library. In our
test we created a basic PDF document. It uses
very few class library calls and a lot of string
operations which are implemented by native IL
instructions.

3. DiskReporter recursively walks the directory tree
from a previously specified path and creates an
XML report. In our test 3141 directories and
12257 files were enumerated. It uses more, but
short library calls (xml node and attribute
operations, file property query).

4. Mohican is a small HTTP server using multiple
threads for serving requests. In our test Mohican
served a 1.3MB HTML document referencing 20
different pictures. It uses many and long class
library calls (mainly network and file access).

App. name Normal run Debugger
trace

Profiler
trace

No. of SPs

Counter 00:00.17 01:53:92 00:01.34 110,034

ITextSharp 00:01:02 98:11.32 02:33:50 2,825,242

Disk-
Reporter

00:05.46 24:04.42 00:11.76 316,196

Mohican 00:01.37 n/a 00:01.89 175,434

Table 2: Test results

Table 2 shows the performance comparison of the
normal application run, the run under the control of
the Debugger and the Profiler in mm:ss.ii format. The
last column contains the number of source code
statements executed.

It can be seen that applications containing few class
library calls perform poor under the control of both
the Debugger and the Profiler, while applications
containing many class library calls perform better.

0: ldc.i4 25
5: ldc.i4 1
10: ldc.i4 25
15: ldc.i4 2
20: ldc.i4 3
25: ldc.i4 1
26: call 167772195
31: nop
32: ldc.i4 26
37: ldc.i4 3
42: ldc.i4 26
47: ldc.i4 23
52: call 167772194
57: ldarg 0
58: ldarg 1
59: clt
61: ldc.i4 0
62: ceq
64: stloc 1
65: ldloc 1
66: brtrue 165 (94)
71: ldc.i4 27
76: ldc.i4 3
81: ldc.i4 27
86: ldc.i4 4
91: call 167772194
96: nop
97: ldc.i4 28
102: ldc.i4 7
107: ldc.i4 28

112: ldc.i4 47
117: call 167772194
122: ldstr 1879048193
127: call 167772181
132: nop
133: ldc.i4 29
138: ldc.i4 7
143: ldc.i4 29
148: ldc.i4 19
153: call 167772194
158: ldc.i4 1
159: stloc 0
160: br 197 (32)
165: ldc.i4 31
170: ldc.i4 3
175: ldc.i4 31
180: ldc.i4 16
185: call 167772194
190: ldc.i4 0
191: stloc 0
192: br 197 (0)
197: ldc.i4 32
202: ldc.i4 1
207: ldc.i4 32
212: ldc.i4 2
217: ldc.i4 3
222: ldc.i4 2
223: call 167772195
228: ldloc 0
229: ret

Listing 5: Altered IL code of IsFirstLess method

Applications containing long class library calls (like
any real world enterprise application) perform well
under the control of the Profiler. Unfortunately the
Debugger could not be tested (because of
multithreading).

The runtime trace generated by the Profiler can be
visualized using a Winform application as shown in
Figure 3 (the trace of Mohican). The code fragment
in green (darker) shows the statement executed at an
arbitrary step of the application. Statements in yellow
(lighter) have already been executed, while white
statements have not yet been traversed.

6. CONCLUSION AND FURTHER
WORK

In this paper we have shown how to utilize the .NET
Debugging and Profiling Infrastructure to generate
runtime execution trace of large applications and
analyzed both method using programs of different
characteristic. We can conclude that although the
method based on the Debugger is easier to
implement, the Profiler is much more suitable for
tracing large scale, multithreaded applications.

Therefore, we plan to advance on the Profiler way.
The first and most important thing is to extend our
framework to identify variables in the order as local
variables, method arguments and class variables
appear. We can insert instrumentation code after any
variable load and before any variable store operation.
The on-stack-top variables can be duplicated by the
dup IL instruction in order to consume them in the
parameter of a trace method call.

There are some language elements and CLR features

which we currently do not support like exceptions,
nested classes, anonymous methods, generic types
and methods, application domains.

7. REFERENCES

[Agr91a] H. Agrawal and J. R. Horgan. Dynamic

program slicing. In SIGPLAN Notices No. 6,
pages 246-256, 1990.

[Bes01a] Á. Beszédes, T. Gergely, Zs. M. Szabó, J.
Csirik, T. Gyimóthy. Dynamic slicing method for
maintenance of large C programs, CSMR 2001,
pages 105-113.

[ECMA] ECMA C# and Common Language
Infrastructure Standards
http://msdn.microsoft.com/netframework/ecma/

[Mar03a] K. Maruyama, M. Terada, Timestamp
Based Execution Control for C and Java
Programs, AADEBUG, 2003

[Mik03] A. Mikunov, Rewrite MSIL Code on the Fly
with the .NET Framework Profiling API, MSDN
magazine, issue September 2003,
http://msdn.microsoft.com/msdnmag/issues/03/0
9/NETProfilingAPI/

[Póc05] K. Pócza, M. Biczó, Z. Porkoláb. Cross-
language Program Slicing in the .NET
Framework, Journal of .NET Technologies, 2005

[Stall] Mike Stall’s .NET Debugging Blog,
http://blogs.msdn.com/jmstall/, 2004-2006

[Tip95a] F. Tip, A survey of program slicing
techniques. Journal of Programming Languages,
3(3):121-189, Sept. 1995.

[Zha03a] X. Zhang, R. Gupta, Y. Zhang. Precise
dynamic slicing algorithms. Proc. International
Conference on Software Engineering, pages 319-
329, 2003

Figure 3: Visualizing the trace

