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ABSTRACT 
Effective runtime trace generation is vital for understanding, analyzing, and maintaining large-scale applications. 
In this paper two cross-language trace generation methods are introduced for the .NET platform. The non-
intrusive methods are based on the .NET Debugging and Profiling Infrastructure; consequently, neither additional 
development tools, nor the .NET Framework SDK is required to be installed on the target system. Both methods 
are applied to a test set of real-size executables and compared by performance and applicability. 
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1. INTRODUCTION 
 

Generating and analyzing runtime traces for large 
scale enterprise applications is a common task to 
investigate the cause of arising malfunctions and 
accidental crashes. 

In order to prepare reliable applications, it is 
important to investigate programs using a debugger 
application, and examine the application log or the 
event log of the operating system so that erroneous 
instructions and variables getting incorrect values can 
be detected. However, there are many situations 
where a simple debugger fails to find the erroneous 
instructions and variables. One common example is 
when the error occurs in a production environment 
where we are not allowed to install a development 
environment to detect the bug [Mar03a]. 
Furthermore, multithreaded applications or 
applications producing incorrect behavior only under 
heavy load often may not be debugged correctly on 

the development machines. What makes things even 
more complicated is that incompatibility issues might 
also arise in the case of programs and components 
that run on a deployment server or a client computer. 
Further problematic situations include cases when the 
deployment servers are in a Network Load Balancing 
(NLB) Cluster, or the isolation level on the IIS web 
server is too restrictive. 

The most common research area where low level 
runtime traces are used in the academic world is 
dynamic program slicing [Agr91a, Bes01a, Póc05a, 
Tip95a, Zha03a]. The result of program slicing can 
also be used in the industry. The original goal of 
program slicing was to map mental abstractions made 
by programmers during debugging to a reduced set of 
statements in source code. With the help of program 
slicing programmers are able to identify bugs more 
precisely and at a much earlier stage. 

In this article we show two different methods for 
generating source code statement level runtime traces 
for applications hosted by the Microsoft .NET 
Framework 2.0. In their current form our solutions 
are incompatible with older versions (1.0, 1.1) of the 
.NET Framework but they can be ported back. None 
of our methods requires the modification of the 
original source code nor the Runtime. Consequently, 
these solutions do not depend on either Rotor (the 
Shared Source implementation of the .NET 
Framework), Mono, or any other open source 
software. 
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None of the methods requires the installation of the 
development tools or the Microsoft .NET Framework 
SDK on the target machine, and since .NET is a 
cross-language programming environment, they can 
be used to generate trace for programs written in any 
.NET programming language. 

The first trace generating method uses the .NET 
Debugger which we presented in [Póc05] in order to 
utilize it in our dynamic slicing algorithm, while the 
second approach exploits the capabilities of the .NET 

Profiling API and IL code rewriting [Mik03]. It will 
clear up that only the second method is suitable for 
large scale multithreaded applications, and the first 
method is sufficient only for toy programs. 

In the next section we describe the main concepts and 
the architecture of the .NET Debugging and Profiling 
Infrastructure. In the 3rd section we will describe the 
method that uses the .NET Debugger to generate 
trace, while in the 4th section the second solution 
based on the .NET Profiler and IL code rewriting 
technique will be presented. In the 5th section we 
compare these methods and present performance 
figures with different applications. We primarily 
focus on tracing statements of the original source 
code that appear in the execution path, and will not 
give detailed description on how to identify variables. 
However, in the last section we show how the 
prepared solutions can be complemented to identify 
variables. 

2. .NET DEBUGGING AND 
PROFILING INFRASTRUCTURE 

 

All 20+ .NET languages compile to an intermediate 
language code called Common Intermediate 
Language (CIL) or simply Intermediate Language 
(IL). The compiled code is organized into assemblies. 
Assemblies are portable executables - similar to dll’s 
- with the important difference that assemblies are 
populated with .NET metadata and IL code instead of 
normal native code. The .NET metadata holds 
information about the defined and referenced 
assemblies, types, methods, class member variables 
and attributes [ECMA]. IL is a machine-independent, 
programming language-independent, low-level, 
assembly-like language using a stack to transfer data 
among IL instructions. The IL code is jitted by the 
.NET CLR (Common Language Runtime) to 
machine-dependent instructions at runtime. 

With the release of .NET, a new Debugging API has 
also been introduced in the Microsoft world. Script 
engines can now compile or interpret code for the 
Microsoft Common Language Runtime (CLR) 
instead of integrating debugging capabilities directly 

into applications through Active Scripting [Pell]. 
.NET Debugging Services is not only able to debug 
every code compiled to IL written in any high level 
language, but it also provides debugging capabilities 
for all modern Object Oriented languages. 

The .NET CLR supports two types of debugging 
modes: out-of-process and in-process.  

Out-of-process debuggers run in a separate process 
providing common debugger functionality. 

In-process debuggers are used for inspecting the run-
time state of an application and for collecting 
profiling information. These kinds of debuggers 
(profilers) do not have the ability to control the 
process or handle events like stepping, breakpoints, 
etc. 

The CLR Debugging Services are implemented as a 
set of some 70+ COM interfaces, which include the 
design-time application, the symbol manager, the 
publisher and the profiler. 

The design-time interface is responsible for handling 
debugging events. It is implemented separated from 
the CLR while the host application must reside in a 
different process. The application has a separate 
thread for receiving debugger events that run in the 
context of the debugged application. When a debug 
event occurs (assembly loaded, thread started, 
breakpoint reached, etc.) the application halts and the 
debugger thread notifies the debugging service 
through callback functions. 

The symbol manager is responsible for interpreting 
the program database (PDB) files that contain data 
used to describe code for the modules being 
executed. The debugger also uses assembly metadata 
that also holds useful information described earlier. 
The PDB files contain debugging information and are 
generated only when the compiler is explicitly forced 
to do so. Besides enabling the unique identification of 
program elements like classes, methods, variables 
and statements, the metadata and the program 
database can also be used to retrieve their original 
position in the source code. 

The publisher is responsible for enumerating all 
running managed processes in the system. 

Symbol 
Manager 

Design time 

CLR Publisher 

 

Profiler 

Figure 1: CLR Debugging architecture 



 

The profiler tracks application performance and 
resources used by running managed processes. The 
profiler runs in-process of the inspected application 
and can be used to handle events like module and 
class loading/unloading, jitting, method calls, events 
related to exceptions and garbage collection 
performance. 

3. .NET DEBUGGER WAY TO 
INSTRUMENT APPLICATIONS 

 

To employ the Debugger first we set a breakpoint to 
the entry point of our application and we step along 
each executing statement until the end. The step (or 
step-in) debugging operation goes along sequence 
points in the original source code. Sequence points 
which can be identified using metadata and the 
program database divide the statements in high-level 
programming languages. 

The CLR Debugger API called ICorDebug [Stall] is 
implemented by native COM interfaces. It can be 
directly reached from managed or unmanaged code 
but there are also higher level managed wrapper 
classes used by MDbg [Stall], the managed debugger 
part of the Microsoft .NET Framework 2.0 SDK with 
full source code.  

Using these interfaces we can start a process for 
debugging and register our managed or unmanaged 
callback functions. As mentioned earlier, querying 
run-time information of program variables is another 
important application. 

The structure of our solution: 

1. Low level managed COM Wrapper 

2. High level managed API of the previous 

3. Application employing the previous to generate 
runtime execution trace 

The 1st and the 2nd layer of our solution is not 
implemented by us rather we borrowed it from MDbg 
that is freely usable and provided by Microsoft. 

The low level managed COM Wrapper (1st layer) 
represents a COM marshaling code that is used to call 
native Debugging API functions and is written in IL. 
It resides in the corapi2 folder in MDbg’s source tree. 

The high level managed API (2nd layer) provides an 
easy-to-use higher level managed wrapper to the 
underlying layer and it is written in C# 2.0. 
Sometimes it uses properties instead of methods, and 
dispatches native debugging events as managed 
events. It resides in the corapi folder of MDbg’s 
source tree. 

Our solution based on these APIs can be downloaded 
from http://avalon.inf.elte.hu/src/netdebug/ . 

In the implementation first we create the process to 
be run but do not start it. A Debugger event is raised 
at every module load. When the module containing 
the user entry point (Main method) is loaded we set a 
breakpoint at this entry point. After loading the 
process and setting the breakpoint we let the 
application run. At this point the process is actually 
created and the OnCreateProcess event is raised by 
the Debugger. In the handler of this event we set the 
state of the application being debugged to running 
and start a while loop which is allowed to run while 
the application is alive. When the breakpoint 
previously set is encountered the OnBreakPoint 
debug event is raised. In the handler of this debug 
event an AutoResetEvent called eventComplete is set 
and we wait for eventModState to be set. The handler 
of OnStepComplete Debugger event does exactly the 
same. 

Afterwards the while loop does the following three 
things: 

1. Waits for the eventComplete event which is 
set by the Debugger event handlers 

2. doStepIn operation is called as described later 

3. Sets the eventModState event 

Between setting the eventComplete event and waiting 
for the eventModState event the doStepIn method 
runs which requires/sets the following information at 
every step: 

1. The IL instruction pointer 

2. The current function token and module 

3. Which sequence point belongs to the current IL 
instruction 

4. The target of the next step 

The IL instruction pointer, the function token and the 
module can be easily queried from the CorFrame 
object which can be queried from the current thread. 
The sequence points are required to output the actual 
source line and source column to the trace and to 
define the next step using the StepRange method of 
CorStepper. The sequence points and the target of the 
next step are static properties, therefore we cache 
them so that they can be queried by the 
GetSequencePoints and GetRanges method of the 
current ISymbolMethod interface accordingly. At the 
first and last sequence point of each function we log a 
function enter and leave event in the trace. 

Unfortunately, this approach is not able to correctly 
handle multithreaded application because it is not 
possible to step from one thread to another and the 
debugger does not notify us about thread switches.  



 

4. .NET PROFILER WAY TO 
INSTRUMENT APPLICATIONS 

 

Basically, this approach explores all sequence points 
in all methods of all classes and all modules of the 
application being profiled and inserts trace method 
calls defined in an outer assembly at every sequence 
point at IL code level [Mik03]. 

The .NET Profiler provides a COM interface called 
ICorProfilerCallback2 exposing a set of callbacks 
which can be implemented as a COM class. The 
implementer is not allowed to use any managed 
programming language, otherwise the Profiler would 
profile itself. Consequently we have chosen the C++ 
language to demonstrate this approach. 

We have used some other COM interfaces also like 
ISymUnmanagedReader, ISymUnmanagedMethod, 
IMetaDataImport and ICorProfilerInfo2 while the 
standard classes implementing these interfaces were 
instantiated using Microsoft’s ATL (Active Template 
Library). 

From the 70+ Profiler events provided by the 
ICorProfilerCallback2 interface we have used only 
two: ModuleLoadFinished and ClassLoadFinished. 

4.1. Tracing Methods: Implementation 
and Referencing 
In this section we discuss the tracing methods we are 
using, how they log and the way we reference them. 

We created a module (assembly) called 
TracerModule and placed a static class called Tracer 
in it containing only static methods. 

Listing 1 illustrates the trace method executed at 
every method entry (first sequence point executed) 
and leave (last sequence point, which is always 
executed unless exception has been thrown).  

The first four parameters represent the position of the 
sequence point in the source code, the fifth parameter 

represents the unique function identifier and the 
action code (1 for E(nter), 2 for L(eave)). Since the 
tracer is prepared for multithreaded applications, we 
lock on a static object and output the unique managed 
thread identifier at every step. At intra-function 
sequence points the trace method gets only the first 
four parameters and does not output any function 
identifier or action code. 

If we intend to call a method placed in an outer 
module we have to reference the assembly containing 
that method, the class and the method itself. We 
decided not to modify the original program in any 
way so we have to add these references to the in-
memory metadata of every assembly at runtime. The 
best place to do this is the ModuleLoadFinished 
Profiler event. 

Through the DefineAssemblyRef method of the 
IMetaDataAssemblyEmit interface, the 
DefineTypeRefByName and the DefineMemberRef 
methods of IMetaDataEmit2 interface we are able to 
add these references to the in-memory metadata of 
assemblies and receive their token values. When 
adding these references they are specified simply by 
their names, the function token is used to call the 
belonging function at the corresponding sequence 
points. 

4.2. Internal Representation of Native 
.NET Primitives 
In this section we will give a general overview of the 
internal representation of .NET methods, IL 
instructions and Exception Handling Clauses 
[Mik03]. 

4.2.1. Internal representation of .NET methods 
Every .NET method has a header, IL code and may 
have extra padding bytes to maintain DWORD 
alignment. Optionally, it may have an SEH 
(Structured Exception Handling) header and 
Exception Handling Clause. 

A .NET method can be in Tiny and in Fat format. A 
Tiny method is smaller than 64 bytes, its stack depth 
does not exceed 8 slots, contains no local variables, 
SEH header and exception handlers. Fat methods 

public  static  void  DoFunc( uint  startLine,  
uint  startColumn, uint  endLine, uint  endColumn,  
uint  functionID, uint  action) 

{ 
  try 
  { 
    lock  (lockObj) 
    { 
      char  act = 'E' ; 
      if  (action == 2) 
        act = 'L' ; 
      sw.WriteLine( "{6}T{5}{4}{0}:{1}-{2}:{3}" , 

startLine, startColumn, endLine, 
endColumn, act, functionID,       
Thread .CurrentThread.ManagedThreadId); 

    } 
  } 
  catch  { } 
} 

Listing 1: Trace method 
Header 
IL Code 
SEH Header 
Ex. Hand. Clauses 
Padding byte 

Tiny method FAT method 

Figure 2: Method formats 



 

overrun one or more of these criterions. 

4.2.2. IL instruction types 
IL instructions can be divided into several categories 
based on the number and type of parameters they use: 

- have no parameter (dup: duplicates the element 
on top of the stack; ldc.i4.-1,…ldc.i4.8: load an 
integer on stack (-1,…8)) 

- has one integer (8, 16, 32, 64 bits long) 
parameter (ldc.i4 <int>: load the integer 
specified by <int> on stack; br <param>, br.s 
<reloff>: long or short jump to the relative 
address specified by <reloff>) 

- has one token parameter (call <token>: calls the 
method specified by <token>; box <token>: box 
a value type with type <token> into an object; 
ldfld <token>: load the field specified by 
<token> of the stack-top class on stack) 

- multi-parameter instructions (switch <count> 
<reloff1>…<reloffcount>: based on the stack-
top value representing the relative offset 
parameter index jumps to the chosen relative 
offset) 

4.2.3. Exception Handling Clauses 
Every Fat method can have one or more exception 
handlers. Every EHC (Exception Handling Clause) 
has a header and specifies its try and handler starting 
(absolute) offset and length. An EHC can be also in 
Tiny and Fat format based on the number of bytes the 
offset and length properties are used to describe. 
Obviously each EH offset and length specifies a 
sequence point beginning and ending position in the 
IL code-flow.  

4.3. Let the Game Begin: IL Code 
Rewriting 
Our goal is to change the IL Code of methods before 
they are jitted to native code. We have chosen the 
ClassLoadFinished Profiler event to perform this 
operation because in this early stage we are able to 
enumerate all methods (with the EnumMethods 
method of IMetaDataImport interface) of the class 
just loaded and rewrite the IL code of a whole bunch 
of methods. The binary data of a method can be 
retrieved by the GetILFunctionBody method of 
ICorProfilerInfo2. After IL code rewriting, necessary 
space for the new binary data can be allocated using 
the Alloc method of IMethodMalloc and the binary 
data can be set with the SetILFunctionBody method 
of ICorProfilerInfo2.  

Single-method binary data operations and IL code 
rewriting can be divided into five steps: 

1. Parsing binary data and storing it in custom data 
structures 

2. Upgrading method and instruction format 

3. Insertion of instrumentation code to the IL code-
flow 

4. Recalculating offsets and lengths 

5. Storing new representation in binary format 

4.3.1. Parsing binary method data 
At first we determine the sequence points of the 
method being parsed using the GetSequencePoints 
method of ISymUnmanagedMethod. This procedure 
determines the IL- and original source code-level 
start and end offsets for every sequence point. The 
first byte of the header describes whether the method 
is tiny or fat, the function is parsed using this 
information.  

The IL-level offsets of sequence points were 
determined previously, now the binary data has to be 
assigned to them and the IL instructions have to be 
identified based on the binary data at every sequence 
point. Every category of IL instructions featured in 
4.2.2 is able to parse itself and determine its 
parameters (integer value, token value, multiple 
parameters). Furthermore it can also generate both a 
human readable and a binary representation (along 
with its length) of it. 

Consider the simple method in Listing 2. In Table 1 
the corresponding sequence points are shown 
identified by their IL offset, the start and end offsets 
by line and column numbers.  

Index IL offset Start offset End offset 

0 0 25,1 25,2 
1 1 26,3 26,23 
2 9 0xfeefee,0 0xfeefee,0 
3 12 27,3 27,4 
4 13 28,7 28,47 
5 24 29,7 29,19 
6 28 31,3 31,16 
7 32 32,1 32,2 

Table 1: Sequence Point Offsets 

Sequence point at index 2 petted FeeFee does not 
have a real source code level offset just helps us to 
jump out if the predicate fails. 

The IL code in Listing 4 illustrates the internal 
representation of method in Listing 2. The numbering 
on the left indicates the IL offsets while the numbers 
right to the branch instructions (brtrue.s, br.s) 

static  bool  IsFirstLess( int  value1, int  value2) 
{ 
  if  (value1 < value2) 
  { 
    Console .WriteLine( "Yes, first is less" ); 
    return  true ; 
  } 
  return  false ; 
}  

Listing 2: Simple C# Method 



 

represents absolute target offset, relative target offset, 
target sequence point and target instruction index at 
the target sequence point. Parameters of ldstr and call 
instructions are of type string and functions tokens 
respectively. The absolute target offset of branch 
instructions identified by target IL instruction has to 
be calculated from the instruction offset and the 
relative target offset. 

If exist, the EHCs are also parsed [Mik03]. 

4.3.2. Upgrading method and instruction format 
In case of Tiny method format the header is upgraded 
to represent a Fat format because we can easily 
overrun the limitations of Tiny format. 

The short branch instructions (brtrue.s, br.s, bge.un.s, 
etc.) are converted to their long pairs (brtrue, br, 
bge.un, etc.) because we cannot guarantee that the 
relative branch lengths will remain within the 
numeric representation barriers after inserting some 
instrumentation instructions between the branch 
instructions and their targets. 

Tiny Exception Handling Clauses are also upgraded 
to store offset and length values in DWORD format 
because the limitation of original WORD (offset) and 
BYTE (length) can be easily overrun after 
instrumentation code insertion. 

4.3.3. Instrumentation code insertion 
Now we have the Token IDs of Trace methods, 
queried the IL and source code level offsets and 
lengths of sequence points and converted the binary 
data to upgraded IL instruction flow. Now we 
examine how the methods called DoFunc (in Listing 
1) and its pair called DoTrace can be parameterized 
and called. While DoFunc is intended to use at 
method enter and leave, DoTrace handles intra-
function sequence points. 

As we have mentioned earlier, IL instructions are 
able to parse themselves therefore we create a BYTE 
array to store binary data which can be easily parsed 

and stored in the same type of container where the 
original instructions are stored. 

The parameters of the method to be called are loaded 
on the stack using the ldc.i4 instruction (opcode 
0x20) in order of parameters and the Token ID of 
method is given as the parameter of call instruction 
(opcode 0x28). The possible instruction (ldc.i4.1, or 
ldc.i4.2) at index 25 surely having a one byte opcode 
(0x17 or 0x18) loads 1 for enter or 2 for leave on 
stack respectively. 

The above parameters are dynamically substituted 
depending on the data of the current sequence point 
and a unique function ID (generated by an own 
counter) while the function token can be preset since 
it is module (and not function) dependent. 

In the intra-function sequence points only the data of 
sequence points is substituted and the thread ID is 
queried at each step, the function ID and other 
information are irrelevant here. The substituted 
binary data is parsed and converted to IL instructions 
and inserted into the beginning of the IL code 
container of every sequence point. 

4.3.4. Recalculating offsets and lengths 
Since the IL instruction flow is altered by inserting 
extra instructions the target offsets of branch 
instructions and the start offset and length properties 
of Exception Handling Clauses have to be 
recalculated. 

A target offset of a branch instruction can point to the 
first instruction of a sequence point and can point to 
other than the first instruction. If the original branch 
target offset pointed to the first instruction of a 
sequence point then we change the target offset to the 
newly created first instruction in order to run 
instrumentation after jumps also. If the original 
branch target pointed to other then the first 
instruction then we leave it to target to the same 
instruction as before. 

Any IL instruction in our representation can calculate 
its length, so we can easily recalculate the new offsets 
of IL instructions and sequence points for the branch 
targets also.  

The offset and length properties of Exception 
Handling Clauses can be calculated similarly. 

BYTE insertFuncInst[31]; 
insertFuncInst[0] = 0x20; //ldc.i4, start line 
insertFuncInst[5] = 0x20; //ldc.i4, start column 
insertFuncInst[10] = 0x20; //ldc.i4, end line 
insertFuncInst[15] = 0x20; //ldc.i4, end  column 
insertFuncInst[20] = 0x20; // ldc.i4, func. id 
insertFuncInst[25] = 0x0; // ldc.i4.1 or ldc.i4.2 
insertFuncInst[26] = 0x28; // call 
*((DWORD *)(insertFuncInst+27)) = 
                    tracerDoFuncMethodTokenID;  

Listing 3: Binary representation of trace method call 

0: nop 
1: ldarg 0 
2: ldarg 1 
3: clt 
5: ldc.i4 0 
6: ceq 
8: stloc 1 
9: ldloc 1 
10: brtrue.s 28 (16) [tsp: 6, til: 0] 
12: nop 
13: ldstr 1879048193 
18: call 167772181 
23: nop 
24: ldc.i4 1 
25: stloc 0 
26: br.s 32 (4) [tsp: 7, til: 0] 
28: ldc.i4 0 
29: stloc 0 
30: br.s 32 (0) [tsp: 7, til: 0] 
32: ldloc 0 
33: ret 

Listing 4: Human Readable Output of Internal 
Method Representation 



 

4.3.5. Storing the instrumented method 
Now we have the instrumented method represented in 
our data structures. The job is to store the data and IL 
code back in binary format following the 
specification. The binary data can be restored to the 
CLR by using the method described in 4.3. 

5. COMPARISON OF METHODS AND 
TEST RESULT 

 

In the previous sections we have presented two 
different methods for generating runtime execution 
trace of .NET-based applications. 

None of the methods require us to modify the 
applications being tested. Both methods can be 
accomplished to produce trace information about the 
value of accessed variables of any type, and identify 
reference variables. With the help of the Debugger, 
reference variables can be identified by their Object 
Id, but obtaining this Id requires many time 
consuming operations [Stall]. Using the Profiler’s IL 
code rewriting capabilities it is also possible to 
identify reference variables, and much faster than 
with the Debugger. A value type variable is always 
identifiable by the sequence point occurrence it was 
created in. 

The Debugger is unable to notify us about thread 
switches and the step-in operation is unable to jump 
through threads therefore it is not possible to handle 
multithreaded applications. To the contrary, using the 
Profiler we are able to log the thread’s ID at every 
sequence point of the application. 

In order to make the Debugger work we have to 
attach it to the process we intend to instrument. To 

use the Profiler, it is required to register it as a COM 
component using the regsvr32 command and set two 
environment variables in the process, user or system 
context to enable the Profiler in that context. Set 
Cor_Enable_Profiling to 0x1 and Cor_Profiler to the 
GUID or ProgID of our object implementing the 
ICorProfilerCallback2 interface. 

We demonstrate the performance of the methods 
through four applications. The first two use only few 
class library calls so they are intended to measure the 
pure performance. The third application uses much 
more but very short, while the last one uses many and 
long class library calls. 

The character of the four applications: 

1. Counter is a simple application that calculates the 
sum of numbers from 1 to 10000 and prints a dot 
at each step on the screen by implementing the 
addition in a separate function and uses only few 
class library calls, but a lot of integer operations 
which are implemented by native IL instructions. 

2. ITextSharp is an open source PDF library. In our 
test we created a basic PDF document. It uses 
very few class library calls and a lot of string 
operations which are implemented by native IL 
instructions. 

3. DiskReporter recursively walks the directory tree 
from a previously specified path and creates an 
XML report. In our test 3141 directories and 
12257 files were enumerated. It uses more, but 
short library calls (xml node and attribute 
operations, file property query). 

4. Mohican is a small HTTP server using multiple 
threads for serving requests. In our test Mohican 
served a 1.3MB HTML document referencing 20 
different pictures. It uses many and long class 
library calls (mainly network and file access). 

App. name Normal run Debugger 
trace 

Profiler 
trace 

No. of SPs 

Counter 00:00.17 01:53:92 00:01.34 110,034 

ITextSharp 00:01:02 98:11.32 02:33:50 2,825,242 

Disk-
Reporter 

00:05.46 24:04.42 00:11.76 316,196 

Mohican 00:01.37 n/a 00:01.89 175,434 

Table 2: Test results 

Table 2 shows the performance comparison of the 
normal application run, the run under the control of 
the Debugger and the Profiler in mm:ss.ii format. The 
last column contains the number of source code 
statements executed. 

It can be seen that applications containing few class 
library calls perform poor under the control of both 
the Debugger and the Profiler, while applications 
containing many class library calls perform better. 

0: ldc.i4 25 
5: ldc.i4 1 
10: ldc.i4 25 
15: ldc.i4 2 
20: ldc.i4 3 
25: ldc.i4 1 
26: call 167772195 
31: nop 
32: ldc.i4 26 
37: ldc.i4 3 
42: ldc.i4 26 
47: ldc.i4 23 
52: call 167772194 
57: ldarg 0 
58: ldarg 1 
59: clt 
61: ldc.i4 0 
62: ceq 
64: stloc 1 
65: ldloc 1 
66: brtrue 165 (94) 
71: ldc.i4 27 
76: ldc.i4 3 
81: ldc.i4 27 
86: ldc.i4 4 
91: call 167772194 
96: nop 
97: ldc.i4 28 
102: ldc.i4 7 
107: ldc.i4 28 
 

112: ldc.i4 47 
117: call 167772194 
122: ldstr 1879048193 
127: call 167772181 
132: nop 
133: ldc.i4 29 
138: ldc.i4 7 
143: ldc.i4 29 
148: ldc.i4 19 
153: call 167772194 
158: ldc.i4 1 
159: stloc 0 
160: br 197 (32) 
165: ldc.i4 31 
170: ldc.i4 3 
175: ldc.i4 31 
180: ldc.i4 16 
185: call 167772194 
190: ldc.i4 0 
191: stloc 0 
192: br 197 (0) 
197: ldc.i4 32 
202: ldc.i4 1 
207: ldc.i4 32 
212: ldc.i4 2 
217: ldc.i4 3 
222: ldc.i4 2 
223: call 167772195 
228: ldloc 0 
229: ret 
 

Listing 5: Altered IL code of IsFirstLess method 



 

Applications containing long class library calls (like 
any real world enterprise application) perform well 
under the control of the Profiler. Unfortunately the 
Debugger could not be tested (because of 
multithreading). 

The runtime trace generated by the Profiler can be 
visualized using a Winform application as shown in 
Figure 3 (the trace of Mohican). The code fragment 
in green (darker) shows the statement executed at an 
arbitrary step of the application. Statements in yellow 
(lighter) have already been executed, while white 
statements have not yet been traversed. 

6. CONCLUSION AND FURTHER 
WORK 

 

In this paper we have shown how to utilize the .NET 
Debugging and Profiling Infrastructure to generate 
runtime execution trace of large applications and 
analyzed both method using programs of different 
characteristic. We can conclude that although the 
method based on the Debugger is easier to 
implement, the Profiler is much more suitable for 
tracing large scale, multithreaded applications.  

Therefore, we plan to advance on the Profiler way. 
The first and most important thing is to extend our 
framework to identify variables in the order as local 
variables, method arguments and class variables 
appear. We can insert instrumentation code after any 
variable load and before any variable store operation. 
The on-stack-top variables can be duplicated by the 
dup IL instruction in order to consume them in the 
parameter of a trace method call. 

There are some language elements and CLR features 

which we currently do not support like exceptions, 
nested classes, anonymous methods, generic types 
and methods, application domains. 
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