
Supported by the Hungarian Ministry of Education under Grant FKFP 0018/2002 and Microsoft Hungary

Cross-language Program Slicing in the .NET
Framework

Krisztián Pócza

Eötvös Loránd University

Fac. of Informatics, Dept. of
Programming Languages and

Compilers
Pázmány Péter sétány 1/c.

 H-1117, Budapest, Hungary

kpocza@kpocza.net

Mihály Biczó
Eötvös Loránd University

Fac. of Informatics, Dept. of
Programming Languages and

Compilers
Pázmány Péter sétány 1/c.

 H-1117, Budapest, Hungary

mihaly.biczo@axelero.hu

Zoltán Porkoláb
Eötvös Loránd University

Fac. of Informatics, Dept. of
Programming Languages and

Compilers
Pázmány Péter sétány 1/c.

 H-1117, Budapest, Hungary

gsd@elte.hu

ABSTRACT

Dynamic program slicing methods are very attractive for debugging because many statements can be ignored in
the process of localizing a bug. Although language interoperability is a key concept in modern development
platforms, current slicing techniques are still restricted to a single language. In this paper a cross-language
dynamic program slicing technique is introduced for the .NET environment. The method is utilizing the CLR
Debugging Services API, hence it can be applied to large multi-language applications.

Keywords
Program slicing, dynamic slicing, cross-language slicing, .NET Framework

1. INTRODUCTION

At the end of the seventies, when programming
languages reached the level of maturity to directly
support the construction of large software systems, an
urging need for the extension of debugging, reverse
engineering and software maintenance capabilities
emerged. Science’s answer to this challenge was
program slicing [Tip95a]. The original goal of
program slicing was to map mental abstractions made
by programmers during debugging to a reduced set of
statements in source code. As a consequence, it has
always been highly desirable to integrate ‘program
slicers’ with existing debugging environments.

A program slice contains all statements that might
directly or indirectly affect the values of variables in
a set V at a program location p. The pair C=(p,V) is
usually referred to as a slicing criterion, and the

contributing statements as the program slice with
respect to slicing criterion C.

Since the original article of Weiser [Wei84a], many
slightly different notions and algorithms have been
developed to calculate program slices. As
programming languages and existing technologies
evolved, new features such as procedures, pointers,
polymorphism, inter-process communication
capabilities were also introduced, invalidating earlier
definitions.

Weiser’s original method is based on calculating
consecutive sets of indirectly relevant statements
based on control flow and data dependency analysis
[Kri03a, Wei84a, Tip95a]. Later more advanced
methods have been introduced by Ottenstein et al.
calculating slices based on solving a reachability
problem in the program dependency graph (PDG)
[Ott84a]. A PDG is a directed graph with statements
and control predicates in its vertices and edges
corresponding to data and control dependences. A
slicing criterion can be represented as a vertex in the
PDG, and a slice with respect to this criterion
contains all those vertices from which the vertex of
interest can be reached.

What Weiser’s and the PDG approach have in
common is that they completely rely on statically
available information to calculate program slices,
therefore this method is called static slicing. Static
slices have been specifically proposed for

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

.NET Technologies’2005 conference proceedings,
ISBN 80-86943-01-1
Copyright UNION Agency – Science Press, Plzen, Czech Republic

maintenance and program understanding: one is able
to use static slices to observe only parts of the
program that may be relevant from one specific point
of view [Bes01a]. However, making no assumptions
about the program’s input has a degrading effect on
the precision of the obtained slice. Besides statements
that actually affected the value of the variable under
consideration, those that potentially did are also
included in the slice. Although obtained with
relatively small effort, the main disadvantage of
slicing statically is usually the size of the slice.
While static slicing neglects actual program input,
dynamic slicing [Agr91a, Bes01a, Tip95a, Zha03a]
takes it into consideration. Static slicing can be
simply thought of as a method which calculates
statements possibly affecting the value of a variable
of interest. The notion of dynamic slicing is much
closer to running the program against a specific test
case in a unit test: only dependences along a specific
execution path are regarded. This approach implies
that different occurrences of the same statement have
to be considered. As a consequence, unlike a static
(or classical) slicing criterion, a dynamic slicing
criterion consists of a triple (I, o, V), where I
stands for program input, o is the occurrence of a
statement and V is the set of variables under
consideration.

As previously mentioned, a wide range of
applications of program slicing have already been
studied. But the highest potential is probably in
debugging applications, where dynamic slicing is of
great importance. One of the emerging concepts of
modern real-world software systems is that they are
built of a set of modules not necessarily written in the
same programming language. During the whole
lifecycle of such a system new features are added
regularly as new modules, and existing legacy parts
can also be refactored or integrated in such a way.
Therefore, given a framework that directly supports
cross-language programming, one has the capability
to effectively slice real-world programs.

Introduced in 2001, designed with language
interoperability as the key concept in mind, the .NET
Framework is a platform where not only the widely
studied inter-procedural but also ‘cross-module’ and
‘cross-language’ dynamic slicing techniques can be
established. A module can be thought of as the
equivalent of a .NET assembly. The term ‘cross-
language’ means that each assembly might be
composed of source code written in a different
language. One of the most promising candidates for
implementing a tool with this kind of capability is the
.NET Debugging Services API.

Until now, the dynamic slicing community used the
Java platform as its primary environment. Many
interesting approaches have already been proposed,

including slicing at bytecode level [Ume03a],
bytecode transformation and JVM hacking.

However, there was no standard way to implement a
debugger until Java Platform Debugger Architecture
(JPDA) introduced in JDK 1.3. Besides having all
primitives necessary to implement a debugger, JPDA
also supports a number of debugging modes
including in-process and out-of-process debugging.
JPDA is an advanced API with many features similar
to ones present in .NET. Since .NET was released
more than five years after Java, we can rightly assume
the presence of an additional set of features that could
possibly support dynamic slicing.

In this paper we propose a pilot solution for cross-
language dynamic slicing in the .NET Framework.
Our main goal was to develop a dynamic slicing
algorithm that takes advantage of the sophisticated
debugging capabilities of the .NET platform. We also
managed to implement a test application that is
capable of dynamically slicing multi-module
programs written in a C#-Visual Basic .NET mixed
language environment.

2. OVERVIEW OF THE .NET
ARCHITECTURE FROM THE
POINT OF PROGRAM SLICING

In this section we give a brief overview of
Microsoft’s .NET architecture and explain why it is a
perfect candidate for cross-language dynamic
program slicing. We introduce the key concepts
necessary to thoroughly understand the debugging
capabilities of the framework.

.NET was originally designed to replace the classical
Windows Programming Interface (WIN32 API),
Component Object Model (COM) technology and its
Distributed version (DCOM) and also to compete
with the Java platform in the enterprise sector. As
such, .NET offers all advantages of Java, along with
language neutrality. All .NET languages use the same
fully object-oriented runtime library. The philosophy
behind this idea is the observation that it is easy to
learn a new programming language; the hard part is
when programmers are forced to learn many different
class libraries and also legacy APIs. Using .NET, one
is given the freedom to choose any of the 20+
supported languages and can get on with only one
common library. This makes it easy to modify,
transform or even integrate legacy systems.

However, some sophisticated machinery is needed to
deliver these special features. To keep things simple,
we propose a bottom-up overview of the architecture.

The Common Language Runtime (CLR) is the
managed code lattice that everything else is built on.
.NET uses just-in-time (JIT) compiled bytecode
similar to HotSpot mechanism in Java.

Figure 1: An assembly before and after jitting

Being also a fundamental part of the runtime’s
support for multi-language features, the Common
Type System (CTS) provides basic value types,
reference types, type safety, objects, interfaces, and
delegates. It serves as a framework that helps the
establishment of cross-language interoperability and
type safety along with rapid execution capabilities.

The Common Language Specification (CLS) is the
smallest subset of the CTS that all languages
supported by the framework need to share. For
example, two .NET languages can share values of
non-CLS types but there will be languages which are
unable to understand them.

Figure 2: Overview of the .NET architecture

All .NET languages compile to an intermediate
language code called Common Intermediate
Language (CIL). The compiled code is organized into
assemblies. Assemblies are portable executables -
similar to dll’s - with the important difference that
assemblies are populated with .NET metadata and
CIL code instead of normal native code. Figure 1
illustrates the way in which assemblies are jitted.

Figure 2 shows the details of the technology we have
covered so far.

Companies tend to develop their specific solutions to
a given problem, build custom libraries and user
interfaces for their enterprise level applications.
Modules are written separately in time and space,
using different tools and compilers. In a later phase
they are integrated, ideally in a seamless way.
Unfortunately, in practice, this is rarely the case. A
multi-language development platform supporting a
large number of programming languages completed
with a cross language and dynamic slicing capable
debugger is a large step towards automatic – or at
least towards seamless system integration.

In addition, with the help of cross-language program
slicers programmers are able to identify bugs more
precisely and at a much earlier stage. With the help of
its sophisticated, carefully designed architecture and
outstanding debugging capabilities, .NET is the
platform that probably most closely matches the
needs. In the case of program slicing, there is a two
way symbiosis. Slicing improves software quality,
and improved features of platforms like .NET may
simplify slicing to a level where the power of its
practical application appears.

However, it is not only the technical side that might
benefit from such a framework. Microsoft is devoted
to satisfying scientific needs as well with Rotor. Our
approach focuses mainly on the possibilities of
debugging from the scientific aspect. Debuggers are
not toys, they are in fact serious tools in the hand of
programmers. With the advanced features of .NET, a
new generation of slicing capable debuggers is closer
than ever before.

3. TECHNICAL OUTLOOK

In this section we give a brief overview of the basic
architecture of JPDA widely used in the Java slicing
community. The advanced architecture and the
success of JPDA in slicing prompted us to introduce
a similar approach in the .NET environment. We
intend to show how .NET Debugging Services – the
.NET counterpart of JPDA - can be used to generate
call trace of the program being sliced.

JPDA is a multi-layer architecture dedicated to the
direct support of debugger application development.
Since JPDA fits in the philosophy of Java, debuggers
based on this architecture are intended to run on a
variety of physical platforms, virtual machines and
also JDKs.

BCL

CTS
(CLS)

CLR

Base Class Library

Common Type System
Common Language Spec.

Common Language Runtime

Before JIT After JIT

Stub
code

Object
code

CIL

The main three layer of JPDA are:

1. Java Virtual Machine Debug Interface
(JVMDI): all debugging services provided
by the VM

2. Java Debug Wire Protocol (JDWP):
specifies communication standards between
the debugger and the process being
debugged

3. Java Debug Interface (JDI): the top level
interface for debugger developers.

JVMDI is the lowest layer of JPDA. It exposes both
state inspection and controlling capabilities of
applications running in a virtual machine to debugger
developers. Basically, JVMDI is an event-driven
interface. However, it has also indirect controlling
capabilities totally independent of events. Default
JVMDI clients are in-process, that is they run in the
same virtual machine as the application that is being
debugged. On the other hand, the framework also
contains higher-level, out-of-process debugger
interfaces.

JDWP is a communication protocol between the
virtual machine being debugged and the debugger
process. This protocol ensures that a single debugger
is able to work either locally or (in a distributed way)
on a remote computer. A very important aspect of
JDWP is it independence of transport mechanisms.
Every different JDWP implementation might employ
different transport techniques through a simple API.

JDI is the highest level JPDA interface providing
information that is of great importance in case of
debuggers and also other tools that need access to the
running state of a virtual machine.

In the Microsoft world, with the release of .NET, a
new Debugging API and scripting strategy has also
been introduced. Script engines can now compile or
interpret code for the Microsoft Common Language
Runtime (CLR) instead of integrating debugging
capabilities directly into applications through Active
Scripting [Pell]. .NET Debugging Services is not
only able to debug every code compiled to IL written
in any high level language, but it also provides
debugging capabilities for all modern languages.

The CLR supports two types of debugging modes: in-
process and out-of-process. In-process debuggers are
used for inspecting the run-time state of an
application and for collecting profiling information.
These kinds of debuggers do not have the ability to
control the process or handle events like stepping,
breakpoints, etc.

Out-of-process debuggers run in a separately process
providing common debugger functionality.

The CLR Debugging Services are implemented as a
set of some 70+ COM interfaces, which include the
design-time application, the symbol manager, the
publisher and the profiler.

Figure 3: CLR Debugging architecture

The design-time interface is responsible for handling
debugging events. It is implemented separated from
the CLR while the host application must reside in a
different process. The application is interpreted by a
script and has a separate thread for receiving
debugger events that run in the context of the
debugged application. When a debug event occurs
(assembly loaded, thread started, breakpoint reached,
etc.) the application halts and the debugger thread
notifies the debugging service through callback
functions.

The symbol manager is responsible for interpreting
the program database (PDB) files that contain data
used to describe code for the modules being
executed. The debugger also uses assembly metadata
that also holds useful information from the point of
debugging. The PDB files contain debugging
information and are generated only when the
compiler is explicitly forced to do so. Besides
enabling the unique identification of program
elements like classes, functions, variables and
statements, the metadata and the program database
can also be used to retrieve their original position in
the source code.

The publisher is responsible for enumerating all
running managed processes in the system.

The profiler tracks application performance and
resources used by running managed processes.

The CLR Debugging Services API called ICorDebug
[Stall] is implemented by COM interfaces. It can be
directly reached from managed or unmanaged code
but there are also higher level managed wrapper
classes used by MDbg [Stall]. Using these interfaces
we can start a process for debugging and register our
managed or unmanaged callback functions. As

Symbol
Manager

Design time

CLR Publisher

Profiler

mentioned earlier, querying run-time information of
program elements is another important application.

We generated the call trace of our programs using the
CLR debugger. First we set a breakpoint to the entry
of our application and we stepped along until the end.
The step (or step in) debugging operation goes along
sequence points in the original source code. Sequence
points which can be identified using metadata and the
program database divide the statements in high-level
languages. We also used ICorDebug to query the
function call stack at every step.

ICorDebug has not been standardized yet and it is not
likely to be. According to Mike Stall [Stall] it makes
more sense to standardize the compiler’s output
(metadata, symbols, IL format). We have also studied
the other two significant .NET implementations
namely Microsoft’s SSCLI (Rotor) and Mono
sponsored by Novell. Rotor has the same debugging
architecture as the Microsoft .NET Framework so it
would be easy to compile and run our existing tracer
application on that platform. On the other hand,
Mono developers decided against implementing the
debugging API provided by the .NET CLR and Rotor
and have their own debugging mechanism.
Fortunately, the module generating call trace
accounts for only a very small part of our dynamic
slicing framework so it would take relatively small
effort to port it to Mono.

4. ARCHITECTURE & ALGORITHM

In this section we will review the architecture (Fig.
4) of our dynamic slicing framework. It consists of
two phases called Phase 1 and Phase 2. While Phase
1 executes mainly preprocessing steps, Phase 2 runs
the slicing algorithm. The whole framework was
developed and compiled using Microsoft Visual
Studio 2005 beta.

The current implementation of our dynamic slicing
algorithm, that is capable of processing source code
only line-by-line, makes the first step of Phase 1 -
‘beautification’ - necessary. Beautification is a
preprocessing step that enables the debugger to
generate a call trace that is the input of our dynamic
slicing algorithm. Beautification requires a language-
specific parser transforming the original code to an
equivalent version split along sequence points. As a
result of the beautification step the source code lines
can be directly mapped to sequence points that the
debugger is capable of stepping along. As a
consequence, the mapping between lines and
sequence points makes it possible to use the output of
the debugger as the direct input of the dynamic
slicing algorithm.

Since the CLR Debugger is language-independent
and parsers can be developed for any language, it is
possible to generate slices that span across multiple
assemblies compiled from different languages.

Figure 4: Architecture

In case of C#, we compile the beautified source files
by calling the C# compiler csc.exe with the /debug+
switch to generate debugging output. The last step of
Phase 1 is the building of the call trace which is
written to a plain text file. We trace information of
every single statement reached during the execution
of our program using .NET Debugging Services API.
As we have already mentioned, the
ICorDebugStepper interface is used to step along the
application. At each step a triple of data is stored,
namely:

1. The name of the source file name we are in
2. The exact line number in the source file where

the statement of interest resides
3. The state of the call stack at that point

Each element of the triple holds meaningful
information for our dynamic slicing algorithm. Since
the analyzed application can be built-up of multiple
assemblies (and multiple source files), therefore the
correct place including the source file name and exact
line number always have to be recorded. The call
stack is used for tracking function calls.

Source code
Beautification

Recompile in
Debug mode

Generate Call
Trace

Call trace

Dynamic slicing
algorithm

Cross-language

slice

Phase 1

Phase 2

Phase 2 first loads the call trace file produced in
Phase 1. A typical call trace can be seen in Listing 1.

Although in a real application we store fully qualified
names, for the sake of clarity we have used
abbreviations in Listing 1, so M stands for MainNameSpace.MainClass.Main, R for MainNameSpace.MainClass.RecursiveProdSum, A
for OtherModule.Functions.Add and P for Prod.

Listing 1: Call Trace

A screenshot of the framework with source code
corresponding to the call trace in Listing 1 can be
seen in Figure 6.

The next step is to parse traced source files for every
assembly in the program. We use here the same
parser as in the beautification step. Being similar to
existing dynamic slicing algorithms in this aspect
[Bes01a, Xu01a, Zha03a], our approach also
necessitates storing referenced and defined variables
at every statement. The main task of the parser is to
collect referenced and defined variables at every
statement. This is illustrated in the following code
fragment.

Listing 2: Simple C# code fragment

Line 2 defines variable i, line 5 references i and n,
line 7 defines sum and references sum and i, line 11
references sum.

While parsing source files, a Control Dependence
Graph (CDG) [Kri03a] is also created. Control
dependence describes the ability of a program
statement to affect the execution of another program

statement. If node m is control dependent on node n it
means that there is an edge from n to m. Figure 5
illustrates the CDG of the code fragment given in
Listing 2.

Listing 3: Intra-procedural version of our
dynamic slicing algorithm

For example, nodes 1, 2, 3, 4, 5, 11 and 7, 8, 9 are
neighbors; 7, 8, 9 are control dependent on 5.

The call trace for our example program is the
following in regular expression style:
"1,2,3,4(,5,7,8,9){n},5,11". The slicing criterion is
(<n=2>, 111, {sum}).

According to the definition given in Section 1, <n=2>
is the current program input, 111 denotes the first

idx01: MainClass.cs 10 M idx02: MainClass.cs 11 M idx03: MainClass.cs 12 M idx04: MainClass.cs 13 M idx05: MainClass.cs 14 M idx06: MainClass.cs 20 M,R idx07: MainClass.cs 22 M,R idx08: Functions.cs 10 M,R,A idx09: Functions.cs 11 M,R,A idx10: MainClass.cs 23 M,R idx11: Functions.cs 15 M,R,P idx12: Functions.cs 16 M,R,P idx13: MainClass.cs 24 M,R idx14: MainClass.cs 25 M,R idx15: MainClass.cs 20 M,R,R …

loopcond← ∅ varstore← ∅ foreach var∈{slicing_crit_vars} loop varstore←varstore∪ (var,Ref) end foreach foreach stmt in {backward call trace} do if stmt is Assignment then found:= false foreach var∈{stmt.definedvars} do if (var,Ref)∈varstore then varstore[(var,Ref)]←(var,Def) found:= true end if end foreach if found then slice:=slice∪ {stmt} addToVarStoreAndLoopCond(stmt) end if else if stmt is control statement then if stmt∈loopcond then slice←slice∪ {stmt} addToVarStoreAndLoopCond(stmt) end if end if end loop proc addToVarStoreAndLoopCond(stmt) foreach var∈{stmt.referencedvars} do varstore←varstore∪ (var,Ref) end foreach foreach parstmt in {stmt.parents} do loopcond←loopcond∪ parstmt end foreach end proc 1 int n = askUser(); 2 int i = 0; 3 int sum = 0; 4 int prod = 1; 5 while (i < n) 6 { 7 sum += i; 8 prod *= i; 9 i++; 10 } 11 Console.WriteLine(sum);

Figure 5: Control Dependence Graph

occurrence of the statement in source code line 11 in
the call trace and sum is the only variable of interest.
In other words, we are interested in statements that
affect the value of variable sum when we reach the
11th line for the first time with n=2 being the input of
the program.

At this point we have all information necessary to
develop our backward dynamic slicing algorithm.
First we will show it in an intra-procedural form then
extend it to the more interesting inter-procedural
version.

We have a set (called varstore) whose elements are
(Variable, Action) pairs where Action can be
either Def or Ref. Varstore is responsible for
storing the last Action for every variable of interest.
Def denotes variable definition; similarly Ref denotes
referencing that variable.

When the algorithm starts, varstore contains all
variables of interest with Ref Action. For the
previous example: (sum, Ref). When a variable with
Ref action is encountered on the left side of an
assignment, the line number is added to the dynamic
slice (if not already in) and the variable’s Ref Action is changed to Def. (We are not interested in
assignments defining a variable with Def action,
because the earlier definition would be killed
anyway.) The Action of referenced variables with
Def Action is changed to Ref. Referenced variables
not already in varstore are added with Ref Action. (For example, encountering i++ would first
change the Action of i to Def and then Ref).

After processing a statement we always add its parent
according to the CDG to another set called loopcond. Loopcond stores those control flow
statements (loop or condition) that have to be added
to the slice during the first visit. When a control flow
statement is encountered, we check whether it is in loopcond. In this case we process it similar to
assignments (set Ref variables, add parents to loopcond, increase dynamic slice).

The outcome of the algorithm run against code
fragment in Listing 2 is shown in Table 1.

The algorithm is linear in the number of lines in the
call trace; memory usage is also linear with respect to
the number of variables in varstore.

trace Varstore loop-
cond

Slice

11 (sum,Ref) - -
5 (sum,Ref) - -
9 (sum,Ref) 5 -
8 (sum,Ref) 5 -
7 (sum,Ref),(i,Ref) 5 7
5 (sum,Ref),(i,Ref),(n,Ref) - 5,7
9 (sum,Ref),(i,Ref),(n,Ref) 5 5,7,9
8 (sum,Ref),(i,Ref),(n,Ref) 5 5,7,9
7 (sum,Ref),(i,Ref),(n,Ref) 5 5,7,9
5 (sum,Ref),(i,Ref),(n,Ref) - 5,7,9
4 (sum,Ref),(i,Ref),(n,Ref) - 5,7,9
3 (sum,Def),(i,Ref),(n,Ref) - 3,5,7,9
2 (sum,Def),(i,Def),(n,Ref) - 2,3,5,7,9
1 (sum,Def),(i,Def),(n,Def) - 1,2,3,5,7,9

Table 1: Algorithm example

The algorithm starts exactly the same way in the
inter-procedural case as the previously introduced
intra-procedural version. However, when the last line
of a function (eg. in Listing 1 Functions.cs line 11) is
reached, the line from where the function was called
have to be identified even in the case of multiple or
recursive calls (eg. in Listing 1 MainClass.cs line 22).
Also, all local variables that are parameters of the
called function have to be localized.

The calling statement can be found in linear time in
the call trace so the algorithm would become
quadratic. However, some preprocessing can be done
to preserve the linearity of our algorithm. A unique
ID is given to every function call. Note that the
blocks of the same ID-runs do not have to be
continuous (eg. for Listing 1 this would be
1,1,1,1,1,2,2,3,3,2,4,4,2,2,5,…). At a given block of
IDs the ending index of the previous block of the
same IDs can be stored (eg. for statement at idx10
we store idx7, for idx13 store idx10 as shown in
Listing 1). So we can find the calling statement in one
step even for multiple or recursive calls.

In order to achieve constant-cost retrieval of the
index that marks the end of the previous block with
the same IDs, an indexing data structure should be
created and populated in a preprocessing step. At this
point we are aware of the statement that calls the
function and can further investigate the in/out (ref in
C#) and out (out in C#) actual parameters.

The algorithm selects parameter variables of the
caller function with Ref Action in varstore (we
call them formal parameters of interest). If there is
no variable satisfying this criterion, we can safely
disregard the whole function.

Start

1 2 3 4 5

7 8 9

11

Listing 4: Inter-procedural slicing algorithm

Since functions can be identified based on the
signature of the calling statement, formal parameters
can be identified according to their order. Now we
can recursively call our dynamic slicing algorithm by
setting up a new varstore with all formal
parameters of interest with Ref Action. When the
algorithm returns to the caller we can identify all
formal input parameters (nothing or ref in C#)
referenced from the generated slice by checking the varstore of the called function and determine their
actual parameter pairs. We consider them as
referenced variables from the caller’s point of view.
So they are added to the varstore with Ref Action
or their Action value is changed to Ref if already in varstore. We modify loopcond in the exactly
similar way as in the case of assignments and of
course also add the function call to the slice.

It can be seen that we store unique varstore and loopcond information for every function call.
Listing 6 shows the pseudo code of the inter-
procedural version of our dynamic slicing algorithm.
As its name suggests, variable callTrace stores
information generated with the help of .NET
Debugging Services. The algorithm walks from the
end to the beginning of the call trace. Index actLine
decreases at every step of the algorithm. Variable funcEnd stores the location where the currently
processed function is called. If this point is reached
we go back to the caller. The statements are identified
by source files (which can belong to different
modules) and the line number in the source file.
When the algorithm detects that the execution passed
the last line of a method, the source file and line
number (funcEnd) are identified where the
invocation of this method is performed. Actual output
parameters referenced according to varstore are
looked up and their formal output parameter pairs are
matched. Afterwards, the dynamic slicing algorithm
is called recursively.

Returning from the recursion, the referenced formal
input parameters and their actual counterparts are
also identified. They are added to varstore and the
algorithm continues.

Function addToVarStoreAndLoopCond is almost
the same presented in Listing 3 except for that loopcond and varStore are referenced by context.

5. IMPLEMENTATION

In the screen shot shown in Figure 6 we used slicing
criterion (<n=42>, 151, {sum}). The example
contains two files from different assemblies
(MainClass is in the main module and Functions class

Function: doSliceFunction(Context context, int funcend) context.CalculateStartingVarStore() funcID:= -1; while actLine > funcEnd do begin TraceLine trace = callTrace[actLine] if funcID = -1 then funcID:= trace.FuncID //when a new function reached if trace.FuncID <> funcID then begin callPos:= rle[actRLELine].PrevBlockEnd actRLELine:= actRLELine - 1 TraceLine traceMI:= callTrace[callPos] MethodInvoke mi:= source[traceMI.src].Statement[callPos] actualParamsOut:= mi.Outputs.SelectReferenceds(context.VarStore) formalParamsOut:= mi.Actual2Formal(actualParamsOut) Context newContext:= new Context(formalParamsOut) doSliceFunction(newContext, callPos) formalParamsIn:= newContext.SelectReferenceds(mi.Parameters) if formalParamsIn.Count > 0 then begin actualParamsIn:= mi.Formal2Actual(formalParamsIn) context.VarStore.InsertThemAsRef(actualParamsIn) slice←slice ∪ {mi} foreach parstmt in {stmt.parents} do context.loopcond←context.loopcond ∪ parstmt end foreach end if actRLELine:= actRLELine — 1 actLine:= actLine - 1 continue end if //normal statement Statement stmt:= source[trace.src].Statement[trace.line] if stmt is Assignment then found:=false foreach var∈{stmt.definedvars} do if (var,Ref)∈context.VarStore then context.VarStore[(var,Ref)]←(var,Def) found:=true end if end foreach if found then slice:=slice ∪ {stmt} addToVarStoreAndLoopCond(stmt) end if else if stmt is control statement then if stmt∈context.loopcond then slice←slice ∪ {stmt} addToVarStoreAndLoopCond(stmt) end if end if actLine—- end while

which is used in the main module is located in
another module).

In order to test the algorithm proposed earlier, we
have implemented a pilot application that is capable
of slicing programs that satisfy certain restrictions.
These restrictions imply that the source code might
contain only static functions with arbitrary program
constructions (assignment, condition, loop, method
invocation). The program can be built of multiple
modules (assemblies) each containing multiple source
files.

Since the CLR Debugger is language-independent
and parsers can be developed for any language, it is
possible to generate slices that cover multiple
assemblies compiled from different languages.
Unfortunately the only parser we have is for C#.

We used an earlier version of Marcel Debreuil’s C#
source code parser library which employs the
ANTLR parser generator. We compiled our

algorithm using Microsoft Visual Studio 2005 beta
codenamed Whidbey.

6. CONCLUSION AND FURTHER
WORK

In this paper we have shown how to utilize the .NET
Debugging Services API in dynamic program slicing.
Motivated by the Java Platform Debugger
Architecture, our pilot solution can be effectively
used to investigate dynamic dependences among
modules compiled from any CLS-compliant
language. We have also shown that by directly
supporting cross-language programming, the .NET
Framework offers significant surplus over Java.

.NET-languages, mainly C#, VB.NET and managed
C++ have some very noteworthy elements such as

Figure 6: Example run of our slicing framework

delegates, the foreach loop, different kinds of
parameter passing methods and the lock statement
which justify further research related to both static
and dynamic program analysis.

C# language and .NET Framework are evolving
quickly. In Microsoft .NET Framework version 2.0
we intend to investigate generics, anonymous
methods, partial types, yield keyword, nullable types
and also some functional language implementations
like Scheme [Bre04a] and Clean [Her04a].

REFERENCES

[Agr91a] H. Agrawal and J. R. Horgan. Dynamic
program slicing. In SIGPLAN Notices No. 6,
pages 246-256, 1990.

[Bes01a] Á. Beszédes, T. Gergely, Zs. M. Szabó, J.
Csirik, T. Gyimóthy. Dynamic slicing method for
maintenance of large C programs, CSMR 2001,
pages 105-113.

[Bre04a] Bres,Y., Serpette,P., Serrano,M. et al. -
Compiling Scheme programs to the .NET
Common Intermediate Language, 2nd
International Workshop on .NET Technologies,
May 2004

[Her04a] Z. Hernyák, Z. Horváth, V. Zsók. Design of
Language Elements for Dynamic Distributed
Computation of Clean Expressions on Clusters.
Submitted to TFP 2004 Fifth Symposium on
Trends in Functional Programming, Ludwig-
Maximilians University, Munich, Germany,
2004.

[Hor90a] S. B. Horwitz, T. W Reps, D. Binkley.
Inter-procedural slicing using dependence
graphs. ACM Transactions on Programming
Languages and Systems, 12(1): 26-60, January
1990.

[Kri03a] J. Krinke, Advanced Slicing of Sequential
and Concurrent Programs, PhD Thesis,
Universität Passau, April 2003

[Mar03a] K. Maruyama, M. Terada, Timestamp
Based Execution Control for C and Java
Programs, AADEBUG, 2003

 [Oha01a] F. Ohata, K. Hirose, M. Fujii, K. Inouse. A
slicing method for object-oriented programs
using lightweight dynamic information. In Proc.
of the 8th Asia-Pacific Software Engineering
Conference, 2001.

[Ott84a] K. J. Ottenstein, L. M. Ottenstein. The
program dependence graph in software
development environment. ACM SIGPLAN
Notices volume 19(5), pages 177-184, 1984.

[Pel02a] M. Pellegrino. Improve Your Understanding
of .NET Internals by Building a Debugger for
Managed Code. MSDN Magazine, issue
November 2002.
http://msdn.microsoft.com/msdnmag/issues/02/1
1/clrdebugging/

[Rep94a] T. Reps, S. Horwiz, M. Sagiv, G. Rosay.
Speeding up slicing. ACM SIGSOFT Software
Engineering Notices 19, pages 11-20.

[Stall] Mike Stall’s .NET Debugging Blog,
http://blogs.msdn.com/jmstall/, 2004-2005

[Tip95a] F. Tip, A survey of program slicing
techniques. Journal of Programming Languages,
3(3):121-189, Sept. 1995.

[Ume03a] F. Umemori, K. Konda, R. Yokomori, K.
Inoue, Design and Implementation of Bytecode-
based Java Slicing System, SCAM 2003

[Wei84a] M. Weiser. Program Slicing. IEEE
Transactions on Software Engineering. SE-
10(4):352-357, 1984.

[Xu01a] B. Xu, Z. Chen. Dependence Analysis for
Recursive Java Programs. In SIGPLAN Notices
No. 12, Pages 70-76.

[Zha03a] X. Zhang, R. Gupta, Y. Zhang. Precise
dynamic slicing algorithms. Proc. International
Conference on Software Engineering, pages 319-
329, 2003.

