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ABSTRACT 

Dynamic program slicing methods are very attractive for debugging because many statements can be ignored in 
the process of localizing a bug. Although language interoperability is a key concept in modern development 
platforms, current slicing techniques are still restricted to a single language. In this paper a cross-language 
dynamic program slicing technique is introduced for the .NET environment. The method is utilizing the CLR 
Debugging Services API, hence it can be applied to large multi-language applications. 
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1. INTRODUCTION 
 

At the end of the seventies, when programming 
languages reached the level of maturity to directly 
support the construction of large software systems, an 
urging need for the extension of debugging, reverse 
engineering and software maintenance capabilities 
emerged. Science’s answer to this challenge was 
program slicing [Tip95a]. The original goal of 
program slicing was to map mental abstractions made 
by programmers during debugging to a reduced set of 
statements in source code. As a consequence, it has 
always been highly desirable to integrate ‘program 
slicers’ with existing debugging environments. 

A program slice contains all statements that might 
directly or indirectly affect the values of variables in 
a set V at a program location p. The pair C=(p,V) is 
usually referred to as a slicing criterion, and the 

contributing statements as the program slice with 
respect to slicing criterion C. 

Since the original article of Weiser [Wei84a], many 
slightly different notions and algorithms have been 
developed to calculate program slices. As 
programming languages and existing technologies 
evolved, new features such as procedures, pointers, 
polymorphism, inter-process communication 
capabilities were also introduced, invalidating earlier 
definitions.  

Weiser’s original method is based on calculating 
consecutive sets of indirectly relevant statements 
based on control flow and data dependency analysis 
[Kri03a, Wei84a, Tip95a]. Later more advanced 
methods have been introduced by Ottenstein et al. 
calculating slices based on solving a reachability 
problem in the program dependency graph (PDG) 
[Ott84a]. A PDG is a directed graph with statements 
and control predicates in its vertices and edges 
corresponding to data and control dependences. A 
slicing criterion can be represented as a vertex in the 
PDG, and a slice with respect to this criterion 
contains all those vertices from which the vertex of 
interest can be reached.  

What Weiser’s and the PDG approach have in 
common is that they completely rely on statically 
available information to calculate program slices, 
therefore this method is called static slicing. Static 
slices have been specifically proposed for 
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maintenance and program understanding: one is able 
to use static slices to observe only parts of the 
program that may be relevant from one specific point 
of view [Bes01a]. However, making no assumptions 
about the program’s input has a degrading effect on 
the precision of the obtained slice. Besides statements 
that actually affected the value of the variable under 
consideration, those that potentially did are also 
included in the slice. Although obtained with 
relatively small effort, the main disadvantage of 
slicing statically is usually the size of the slice.  
While static slicing neglects actual program input, 
dynamic slicing [Agr91a, Bes01a, Tip95a, Zha03a] 
takes it into consideration. Static slicing can be 
simply thought of as a method which calculates 
statements possibly affecting the value of a variable 
of interest. The notion of dynamic slicing is much 
closer to running the program against a specific test 
case in a unit test: only dependences along a specific 
execution path are regarded. This approach implies 
that different occurrences of the same statement have 
to be considered. As a consequence, unlike a static 
(or classical) slicing criterion, a dynamic slicing 
criterion consists of a triple (I, o, V), where I 
stands for program input, o is the occurrence of a 
statement and V is the set of variables under 
consideration. 

As previously mentioned, a wide range of 
applications of program slicing have already been 
studied. But the highest potential is probably in 
debugging applications, where dynamic slicing is of 
great importance. One of the emerging concepts of 
modern real-world software systems is that they are 
built of a set of modules not necessarily written in the 
same programming language. During the whole 
lifecycle of such a system new features are added 
regularly as new modules, and existing legacy parts 
can also be refactored or integrated in such a way. 
Therefore, given a framework that directly supports 
cross-language programming, one has the capability 
to effectively slice real-world programs. 

Introduced in 2001, designed with language 
interoperability as the key concept in mind, the .NET 
Framework is a platform where not only the widely 
studied inter-procedural  but also ‘cross-module’ and 
‘cross-language’ dynamic slicing techniques can be 
established. A module can be thought of as the 
equivalent of a .NET assembly. The term ‘cross-
language’ means that each assembly might be 
composed of source code written in a different 
language. One of the most promising candidates for 
implementing a tool with this kind of capability is the 
.NET Debugging Services API. 

Until now, the dynamic slicing community used the 
Java platform as its primary environment. Many 
interesting approaches have already been proposed, 

including slicing at bytecode level [Ume03a], 
bytecode transformation and JVM hacking. 

However, there was no standard way to implement a 
debugger until Java Platform Debugger Architecture 
(JPDA) introduced in JDK 1.3. Besides having all 
primitives necessary to implement a debugger, JPDA 
also supports a number of debugging modes 
including in-process and out-of-process debugging. 
JPDA is an advanced API with many features similar 
to ones present in .NET. Since .NET was released 
more than five years after Java, we can rightly assume 
the presence of an additional set of features that could 
possibly support dynamic slicing. 

In this paper we propose a pilot solution for cross-
language dynamic slicing in the .NET Framework. 
Our main goal was to develop a dynamic slicing 
algorithm that takes advantage of the sophisticated 
debugging capabilities of the .NET platform. We also 
managed to implement a test application that is 
capable of dynamically slicing multi-module 
programs written in a C#-Visual Basic .NET mixed 
language environment. 

 

2. OVERVIEW OF THE .NET 
ARCHITECTURE FROM THE 
POINT OF PROGRAM SLICING 

 

In this section we give a brief overview of 
Microsoft’s .NET architecture and explain why it is a 
perfect candidate for cross-language dynamic 
program slicing. We introduce the key concepts 
necessary to thoroughly understand the debugging 
capabilities of the framework. 

.NET was originally designed to replace the classical 
Windows Programming Interface (WIN32 API), 
Component Object Model (COM) technology and its 
Distributed version (DCOM) and also to compete 
with the Java platform in the enterprise sector. As 
such, .NET offers all advantages of Java, along with 
language neutrality. All .NET languages use the same 
fully object-oriented runtime library. The philosophy 
behind this idea is the observation that it is easy to 
learn a new programming language; the hard part is 
when programmers are forced to learn many different 
class libraries and also legacy APIs. Using .NET, one 
is given the freedom to choose any of the 20+ 
supported languages and can get on with only one 
common library. This makes it easy to modify, 
transform or even integrate legacy systems. 

However, some sophisticated machinery is needed to 
deliver these special features. To keep things simple, 
we propose a bottom-up overview of the architecture. 



The Common Language Runtime (CLR) is the 
managed code lattice that everything else is built on. 
.NET uses just-in-time (JIT) compiled bytecode 
similar to HotSpot mechanism in Java. 

Figure 1: An assembly before and after jitting 

 

Being also a fundamental part of the runtime’s 
support for multi-language features, the Common 
Type System (CTS) provides basic value types, 
reference types, type safety, objects, interfaces, and 
delegates. It serves as a framework that helps the 
establishment of cross-language interoperability and 
type safety along with rapid execution capabilities.  

The Common Language Specification (CLS) is the 
smallest subset of the CTS that all languages 
supported by the framework need to share. For 
example, two .NET languages can share values of 
non-CLS types but there will be languages which are 
unable to understand them.  

 

 
Figure 2: Overview of the .NET architecture 

 

All .NET languages compile to an intermediate 
language code called Common Intermediate 
Language (CIL). The compiled code is organized into 
assemblies. Assemblies are portable executables - 
similar to dll’s - with the important difference that 
assemblies are populated with .NET metadata and 
CIL code instead of normal native code. Figure 1 
illustrates the way in which assemblies are jitted. 

Figure 2 shows the details of the technology we have 
covered so far.  

Companies tend to develop their specific solutions to 
a given problem, build custom libraries and user 
interfaces for their enterprise level applications. 
Modules are written separately in time and space, 
using different tools and compilers. In a later phase 
they are integrated, ideally in a seamless way. 
Unfortunately, in practice, this is rarely the case. A 
multi-language development platform supporting a 
large number of programming languages completed 
with a cross language and dynamic slicing capable 
debugger is a large step towards automatic – or at 
least towards seamless system integration. 

In addition, with the help of cross-language program 
slicers programmers are able to identify bugs more 
precisely and at a much earlier stage. With the help of 
its sophisticated, carefully designed architecture and 
outstanding debugging capabilities, .NET is the 
platform that probably most closely matches the 
needs. In the case of program slicing, there is a two 
way symbiosis. Slicing improves software quality, 
and improved features of platforms like .NET may 
simplify slicing to a level where the power of its 
practical application appears. 

However, it is not only the technical side that might 
benefit from such a framework. Microsoft is devoted 
to satisfying scientific needs as well with Rotor. Our 
approach focuses mainly on the possibilities of 
debugging from the scientific aspect. Debuggers are 
not toys, they are in fact serious tools in the hand of 
programmers. With the advanced features of .NET, a 
new generation of slicing capable debuggers is closer 
than ever before. 

 

3. TECHNICAL OUTLOOK 
 

In this section we give a brief overview of the basic 
architecture of JPDA widely used in the Java slicing 
community. The advanced architecture and the 
success of JPDA in slicing prompted us to introduce 
a similar approach in the .NET environment. We 
intend to show how .NET Debugging Services – the 
.NET counterpart of JPDA - can be used to generate 
call trace of the program being sliced. 

JPDA is a multi-layer architecture dedicated to the 
direct support of debugger application development. 
Since JPDA fits in the philosophy of Java, debuggers 
based on this architecture are intended to run on a 
variety of physical platforms, virtual machines and 
also JDKs. 
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The main three layer of JPDA are: 

1. Java Virtual Machine Debug Interface 
(JVMDI): all debugging services provided 
by the VM 

2. Java Debug Wire Protocol (JDWP): 
specifies communication standards between 
the debugger and the process being 
debugged 

3. Java Debug Interface (JDI): the top level 
interface for debugger developers. 

JVMDI is the lowest layer of JPDA. It exposes both 
state inspection and controlling capabilities of 
applications running in a virtual machine to debugger 
developers. Basically, JVMDI is an event-driven 
interface. However, it has also indirect controlling 
capabilities totally independent of events. Default 
JVMDI clients are in-process, that is they run in the 
same virtual machine as the application that is being 
debugged. On the other hand, the framework also 
contains higher-level, out-of-process debugger 
interfaces. 

JDWP is a communication protocol between the 
virtual machine being debugged and the debugger 
process. This protocol ensures that a single debugger 
is able to work either locally or (in a distributed way) 
on a remote computer. A very important aspect of 
JDWP is it independence of transport mechanisms. 
Every different JDWP implementation might employ 
different transport techniques through a simple API. 

JDI is the highest level JPDA interface providing 
information that is of great importance in case of 
debuggers and also other tools that need access to the 
running state of a virtual machine. 

In the Microsoft world, with the release of .NET, a 
new Debugging API and scripting strategy has also 
been introduced. Script engines can now compile or 
interpret code for the Microsoft Common Language 
Runtime (CLR) instead of integrating debugging 
capabilities directly into applications through Active 
Scripting [Pell]. .NET Debugging Services is not 
only able to debug every code compiled to IL written 
in any high level language, but it also provides 
debugging capabilities for all modern languages. 

The CLR supports two types of debugging modes: in-
process and out-of-process. In-process debuggers are 
used for inspecting the run-time state of an 
application and for collecting profiling information. 
These kinds of debuggers do not have the ability to 
control the process or handle events like stepping, 
breakpoints, etc. 

Out-of-process debuggers run in a separately process 
providing common debugger functionality. 

The CLR Debugging Services are implemented as a 
set of some 70+ COM interfaces, which include the 
design-time application, the symbol manager, the 
publisher and the profiler. 

 

 
Figure 3: CLR Debugging architecture 

 

The design-time interface is responsible for handling 
debugging events. It is implemented separated from 
the CLR while the host application must reside in a 
different process. The application is interpreted by a 
script and has a separate thread for receiving 
debugger events that run in the context of the 
debugged application. When a debug event occurs 
(assembly loaded, thread started, breakpoint reached, 
etc.) the application halts and the debugger thread 
notifies the debugging service through callback 
functions. 

The symbol manager is responsible for interpreting 
the program database (PDB) files that contain data 
used to describe code for the modules being 
executed. The debugger also uses assembly metadata 
that also holds useful information from the point of 
debugging. The PDB files contain debugging 
information and are generated only when the 
compiler is explicitly forced to do so. Besides 
enabling the unique identification of program 
elements like classes, functions, variables and 
statements, the metadata and the program database 
can also be used to retrieve their original position in 
the source code. 

The publisher is responsible for enumerating all 
running managed processes in the system. 

The profiler tracks application performance and 
resources used by running managed processes.  

The CLR Debugging Services API called ICorDebug 
[Stall] is implemented by COM interfaces. It can be 
directly reached from managed or unmanaged code 
but there are also higher level managed wrapper 
classes used by MDbg [Stall]. Using these interfaces 
we can start a process for debugging and register our 
managed or unmanaged callback functions. As 
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mentioned earlier, querying run-time information of 
program elements is another important application. 

We generated the call trace of our programs using the 
CLR debugger. First we set a breakpoint to the entry 
of our application and we stepped along until the end. 
The step (or step in) debugging operation goes along 
sequence points in the original source code. Sequence 
points which can be identified using metadata and the 
program database divide the statements in high-level 
languages. We also used ICorDebug to query the 
function call stack at every step. 

ICorDebug has not been standardized yet and it is not 
likely to be. According to Mike Stall [Stall] it makes 
more sense to standardize the compiler’s output 
(metadata, symbols, IL format). We have also studied 
the other two significant .NET implementations 
namely Microsoft’s SSCLI (Rotor) and Mono 
sponsored by Novell. Rotor has the same debugging 
architecture as the Microsoft .NET Framework so it 
would be easy to compile and run our existing tracer 
application on that platform. On the other hand, 
Mono developers decided against implementing the 
debugging API provided by the .NET CLR and Rotor 
and have their own debugging mechanism. 
Fortunately, the module generating call trace 
accounts for only a very small part of our dynamic 
slicing framework so it would take relatively small 
effort to port it to Mono. 

 

4. ARCHITECTURE & ALGORITHM 
 

In this section we will review the architecture (Fig.  
4) of our dynamic slicing framework. It consists of 
two phases called Phase 1 and Phase 2. While Phase 
1 executes mainly preprocessing steps, Phase 2 runs 
the slicing algorithm. The whole framework was 
developed and compiled using Microsoft Visual 
Studio 2005 beta. 

The current implementation of our dynamic slicing 
algorithm, that is capable of processing source code 
only line-by-line, makes the first step of Phase 1 - 
‘beautification’ - necessary.  Beautification is a 
preprocessing step that enables the debugger to 
generate a call trace that is the input of our dynamic 
slicing algorithm. Beautification requires a language- 
specific parser transforming the original code to an 
equivalent version split along sequence points. As a 
result of the beautification step the source code lines 
can be directly mapped to sequence points that the 
debugger is capable of stepping along. As a 
consequence, the mapping between lines and 
sequence points makes it possible to use the output of 
the debugger as the direct input of the dynamic 
slicing algorithm. 

Since the CLR Debugger is language-independent 
and parsers can be developed for any language, it is 
possible to generate slices that span across multiple 
assemblies compiled from different languages. 

 

 
Figure 4: Architecture 

 

In case of C#, we compile the beautified source files 
by calling the C# compiler csc.exe with the /debug+ 
switch to generate debugging output. The last step of 
Phase 1 is the building of the call trace which is 
written to a plain text file. We trace information of 
every single statement reached during the execution 
of our program using .NET Debugging Services API. 
As we have already mentioned, the 
ICorDebugStepper interface is used to step along the 
application. At each step a triple of data is stored, 
namely:  

1. The name of the source file name we are in 
2. The exact line number in the source file where 

the statement of interest resides 
3. The state of the call stack at that point 

Each element of the triple holds meaningful 
information for our dynamic slicing algorithm. Since 
the analyzed application can be built-up of multiple 
assemblies (and multiple source files), therefore the 
correct place including the source file name and exact 
line number always have to be recorded. The call 
stack is used for tracking function calls. 
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Phase 2 first loads the call trace file produced in 
Phase 1. A typical call trace can be seen in Listing 1. 

Although in a real application we store fully qualified 
names, for the sake of clarity we have used 
abbreviations in Listing 1, so M stands for MainNameSpace.MainClass.Main, R for MainNameSpace.MainClass.RecursiveProdSum, A 
for OtherModule.Functions.Add and P for Prod. 
 

 
Listing 1: Call Trace 

 

A screenshot of the framework with source code 
corresponding to the call trace in Listing 1 can be 
seen in Figure 6.  

The next step is to parse traced source files for every 
assembly in the program. We use here the same 
parser as in the beautification step. Being similar to 
existing dynamic slicing algorithms in this aspect 
[Bes01a, Xu01a, Zha03a], our approach also 
necessitates storing referenced and defined variables 
at every statement. The main task of the parser is to 
collect referenced and defined variables at every 
statement. This is illustrated in the following code 
fragment. 

Listing 2: Simple C# code fragment 

 

Line 2 defines variable i, line 5 references i and n, 
line 7 defines sum and references sum and i, line 11 
references sum. 

While parsing source files, a Control Dependence 
Graph (CDG) [Kri03a] is also created. Control 
dependence describes the ability of a program 
statement to affect the execution of another program  

statement. If node m is control dependent on node n it 
means that there is an edge from n to m. Figure 5 
illustrates the CDG of the code fragment given in 
Listing 2. 
 

Listing 3: Intra-procedural version of our 
dynamic slicing algorithm  

 
For example, nodes 1, 2, 3, 4, 5, 11 and 7, 8, 9 are 
neighbors; 7, 8, 9 are control dependent on 5. 

The call trace for our example program is the 
following in regular expression style: 
"1,2,3,4(,5,7,8,9){n},5,11". The slicing criterion is 
(<n=2>, 111, {sum}). 

According to the definition given in Section 1, <n=2> 
is the current program input, 111 denotes the first 

idx01: MainClass.cs 10 M idx02: MainClass.cs 11 M idx03: MainClass.cs 12 M idx04: MainClass.cs 13 M idx05: MainClass.cs 14 M idx06: MainClass.cs 20 M,R idx07: MainClass.cs 22 M,R idx08: Functions.cs 10 M,R,A idx09: Functions.cs 11 M,R,A idx10: MainClass.cs 23 M,R idx11: Functions.cs 15 M,R,P idx12: Functions.cs 16 M,R,P idx13: MainClass.cs 24 M,R idx14: MainClass.cs 25 M,R idx15: MainClass.cs 20 M,R,R … 

loopcond← ∅  varstore← ∅   foreach var∈{slicing_crit_vars} loop  varstore←varstore∪ (var,Ref) end foreach  foreach stmt in {backward call trace} do  if stmt is Assignment then   found:= false   foreach var∈{stmt.definedvars} do    if (var,Ref)∈varstore then     varstore[(var,Ref)]←(var,Def)     found:= true    end if   end foreach   if found then    slice:=slice∪ {stmt}  addToVarStoreAndLoopCond(stmt)   end if  else   if stmt is control statement then   if stmt∈loopcond then    slice←slice∪ {stmt}    addToVarStoreAndLoopCond(stmt)   end if  end if end loop  proc addToVarStoreAndLoopCond(stmt)  foreach var∈{stmt.referencedvars} do   varstore←varstore∪ (var,Ref)  end foreach   foreach parstmt in {stmt.parents} do    loopcond←loopcond∪ parstmt  end foreach end proc  1 int n = askUser();  2 int i = 0;  3 int sum = 0;  4 int prod = 1;  5 while (i < n)  6 {  7 sum += i;  8 prod *= i;  9 i++; 10 } 11 Console.WriteLine(sum); 



Figure 5: Control Dependence Graph 

 

occurrence of the statement in source code line 11 in 
the call trace and sum is the only variable of interest. 
In other words, we are interested in statements that 
affect the value of variable sum when we reach the 
11th line for the first time with n=2 being the input of 
the program. 

At this point we have all information necessary to 
develop our backward dynamic slicing algorithm. 
First we will show it in an intra-procedural form then 
extend it to the more interesting inter-procedural 
version. 

We have a set (called varstore) whose elements are 
(Variable, Action) pairs where Action can be 
either Def or Ref. Varstore is responsible for 
storing the last Action for every variable of interest. 
Def denotes variable definition; similarly Ref denotes 
referencing that variable. 

When the algorithm starts, varstore contains all 
variables of interest with Ref Action. For the 
previous example: (sum, Ref). When a variable with 
Ref action is encountered on the left side of an 
assignment, the line number is added to the dynamic 
slice (if not already in) and the variable’s Ref Action is changed to Def. (We are not interested in 
assignments defining a variable with Def action, 
because the earlier definition would be killed 
anyway.) The Action of referenced variables with 
Def Action is changed to Ref. Referenced variables 
not already in varstore are added with Ref Action. (For example, encountering i++ would first 
change the Action of i to Def and then Ref).  

After processing a statement we always add its parent 
according to the CDG to another set called loopcond. Loopcond stores those control flow 
statements (loop or condition) that have to be added 
to the slice during the first visit. When a control flow 
statement is encountered, we check whether it is in loopcond. In this case we process it similar to 
assignments (set Ref variables, add parents to loopcond, increase dynamic slice). 

The outcome of the algorithm run against code 
fragment in Listing 2 is shown in Table 1. 

The algorithm is linear in the number of lines in the 
call trace; memory usage is also linear with respect to 
the number of variables in varstore. 

 

trace Varstore loop-
cond 

Slice 

11 (sum,Ref) - - 
5 (sum,Ref) - - 
9 (sum,Ref) 5 - 
8 (sum,Ref) 5 - 
7 (sum,Ref),(i,Ref) 5 7 
5 (sum,Ref),(i,Ref),(n,Ref) - 5,7 
9 (sum,Ref),(i,Ref),(n,Ref) 5 5,7,9 
8 (sum,Ref),(i,Ref),(n,Ref) 5 5,7,9 
7 (sum,Ref),(i,Ref),(n,Ref) 5 5,7,9 
5 (sum,Ref),(i,Ref),(n,Ref) - 5,7,9 
4 (sum,Ref),(i,Ref),(n,Ref) - 5,7,9 
3 (sum,Def),(i,Ref),(n,Ref) - 3,5,7,9 
2 (sum,Def),(i,Def),(n,Ref) - 2,3,5,7,9 
1 (sum,Def),(i,Def),(n,Def) - 1,2,3,5,7,9 

Table 1: Algorithm example 

 

The algorithm starts exactly the same way in the 
inter-procedural case as the previously introduced 
intra-procedural version. However, when the last line 
of a function (eg. in Listing 1 Functions.cs line 11) is 
reached, the line from where the function was called 
have to be identified even in the case of multiple or 
recursive calls (eg. in Listing 1 MainClass.cs line 22). 
Also, all local variables that are parameters of the 
called function have to be localized. 

The calling statement can be found in linear time in 
the call trace so the algorithm would become 
quadratic. However, some preprocessing can be done 
to preserve the linearity of our algorithm. A unique 
ID is given to every function call. Note that the 
blocks of the same ID-runs do not have to be 
continuous (eg. for Listing 1 this would be 
1,1,1,1,1,2,2,3,3,2,4,4,2,2,5,…). At a given block of 
IDs the ending index of the previous block of the 
same IDs can be stored (eg. for statement at idx10 
we store idx7, for idx13 store idx10 as shown in 
Listing 1). So we can find the calling statement in one 
step even for multiple or recursive calls.  

In order to achieve constant-cost retrieval of the 
index that marks the end of the previous block with 
the same IDs, an indexing data structure should be 
created and populated in a preprocessing step. At this 
point we are aware of the statement that calls the 
function and can further investigate the in/out (ref in 
C#) and out (out in C#) actual parameters.  

The algorithm selects parameter variables of the 
caller function with Ref Action in varstore (we 
call them formal parameters of interest). If there is 
no variable satisfying this criterion, we can safely 
disregard the whole function. 
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Listing 4: Inter-procedural slicing algorithm 

 

Since functions can be identified based on the 
signature of the calling statement, formal parameters 
can be identified according to their order. Now we 
can recursively call our dynamic slicing algorithm by 
setting up a new varstore with all formal 
parameters of interest with Ref Action. When the 
algorithm returns to the caller we can identify all 
formal input parameters (nothing or ref in C#) 
referenced from the generated slice by checking the varstore of the called function and determine their 
actual parameter pairs. We consider them as 
referenced variables from the caller’s point of view. 
So they are added to the varstore with Ref Action 
or their Action value is changed to Ref if already in varstore. We modify loopcond in the exactly 
similar way as in the case of assignments and of 
course also add the function call to the slice. 

It can be seen that we store unique varstore and loopcond information for every function call. 
Listing 6 shows the pseudo code of the inter-
procedural version of our dynamic slicing algorithm. 
As its name suggests, variable callTrace stores 
information generated with the help of .NET 
Debugging Services. The algorithm walks from the 
end to the beginning of the call trace. Index actLine 
decreases at every step of the algorithm. Variable funcEnd stores the location where the currently 
processed function is called. If this point is reached 
we go back to the caller. The statements are identified 
by source files (which can belong to different 
modules) and the line number in the source file. 
When the algorithm detects that the execution passed 
the last line of a method, the source file and line 
number (funcEnd) are identified where the 
invocation of this method is performed. Actual output 
parameters referenced according to varstore are 
looked up and their formal output parameter pairs are 
matched. Afterwards, the dynamic slicing algorithm 
is called recursively.  

Returning from the recursion, the referenced formal 
input parameters and their actual counterparts are 
also identified. They are added to varstore and the 
algorithm continues.  

Function addToVarStoreAndLoopCond is almost 
the same presented in Listing 3 except for that loopcond and varStore are referenced by context. 

 

5. IMPLEMENTATION 
 

In the screen shot shown in Figure 6 we used slicing 
criterion (<n=42>, 151, {sum}). The example 
contains two files from different assemblies 
(MainClass is in the main module and Functions class 

Function: doSliceFunction(Context context, int funcend) context.CalculateStartingVarStore() funcID:= -1; while actLine > funcEnd do begin  TraceLine trace = callTrace[actLine]  if funcID = -1 then funcID:= trace.FuncID   //when a new function reached  if trace.FuncID <> funcID then  begin   callPos:= rle[actRLELine].PrevBlockEnd   actRLELine:= actRLELine - 1   TraceLine traceMI:= callTrace[callPos]   MethodInvoke mi:=  source[traceMI.src].Statement[callPos]   actualParamsOut:=  mi.Outputs.SelectReferenceds(context.VarStore)   formalParamsOut:= mi.Actual2Formal(actualParamsOut)   Context newContext:= new Context(formalParamsOut)   doSliceFunction(newContext, callPos)   formalParamsIn:= newContext.SelectReferenceds(     mi.Parameters)   if formalParamsIn.Count > 0 then   begin    actualParamsIn:= mi.Formal2Actual(formalParamsIn)    context.VarStore.InsertThemAsRef(actualParamsIn)    slice←slice ∪ {mi}    foreach parstmt in {stmt.parents} do     context.loopcond←context.loopcond ∪ parstmt    end foreach   end if   actRLELine:= actRLELine — 1   actLine:= actLine - 1   continue  end if   //normal statement Statement stmt:=  source[trace.src].Statement[trace.line]  if stmt is Assignment then   found:=false   foreach var∈{stmt.definedvars} do    if (var,Ref)∈context.VarStore then     context.VarStore[(var,Ref)]←(var,Def)     found:=true    end if   end foreach   if found then    slice:=slice ∪ {stmt}  addToVarStoreAndLoopCond(stmt)   end if  else   if stmt is control statement then   if stmt∈context.loopcond then    slice←slice ∪ {stmt}    addToVarStoreAndLoopCond(stmt)   end if  end if  actLine—- end while 



which is used in the main module is located in 
another module). 

In order to test the algorithm proposed earlier, we 
have implemented a pilot application that is capable 
of slicing programs that satisfy certain restrictions. 
These restrictions imply that the source code might 
contain only static functions with arbitrary program 
constructions (assignment, condition, loop, method 
invocation). The program can be built of multiple 
modules (assemblies) each containing multiple source 
files.  

Since the CLR Debugger is language-independent 
and parsers can be developed for any language, it is 
possible to generate slices that cover multiple 
assemblies compiled from different languages. 
Unfortunately the only parser we have is for C#. 

We used an earlier version of Marcel Debreuil’s C# 
source code parser library which employs the 
ANTLR parser generator. We compiled our 

algorithm using Microsoft Visual Studio 2005 beta 
codenamed Whidbey. 

 

6. CONCLUSION AND FURTHER 
WORK 

 

In this paper we have shown how to utilize the .NET 
Debugging Services API in dynamic program slicing. 
Motivated by the Java Platform Debugger 
Architecture, our pilot solution can be effectively 
used to investigate dynamic dependences among 
modules compiled from any CLS-compliant 
language. We have also shown that by directly 
supporting cross-language programming, the .NET 
Framework offers significant surplus over Java. 

.NET-languages, mainly C#, VB.NET and managed 
C++ have some very noteworthy elements such as 

Figure 6: Example run of our slicing framework 

 



delegates, the foreach loop, different kinds of 
parameter passing methods and the lock statement 
which justify further research related to both static 
and dynamic program analysis.  

C# language and .NET Framework are evolving 
quickly. In Microsoft .NET Framework version 2.0 
we intend to investigate generics, anonymous 
methods, partial types, yield keyword, nullable types 
and also some functional language implementations 
like Scheme [Bre04a] and Clean [Her04a]. 
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