
STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume XLV, Number 1, 2000

SECURING DISTRIBUTED .NET APPLICATIONS USING

ADVANCED RUNTIME ACCESS CONTROL

KRISZTIÁN PÓCZA, MIHÁLY BICZÓ, ZOLTÁN PORKOLÁB

Abstract. The architecture and integration of distributed applications
increased in complexity over the last decades. It was Service Oriented Ar-
chitecture (SOA) that answered most of the emerging questions by its ex-
plicit and contract-based interface definitions for services and autonomous
components. The exposed functionality can be used by anyone who has
access to the public interface of SOA applications. Due to loose secu-
rity handling, risks often emerge in SOA applications. Interfaces are usu-
ally published to an unnecessarily wide set of clients. Although there are
attempts to implement fine-grained access control mechanisms in object-
oriented programming languages like Eiffel, C# and Java, these solutions
are in-process that means that they cannot cross service contract bound-
aries in distributed applications. For these, it is of utmost importance
to validate the type and the identity of the caller, track the state of the
business process and even validate the client itself using simple, declara-
tive syntax. In this paper we present a framework that aims to introduce
fine-grained access control mechanisms in the context of distributed .NET
applications. We present a semi-formalized description of the framework
and also a pilot implementation.

1. Introduction

The complexity of IT systems has been getting increasingly complex ever
since the beginning of software development. IT systems and the business
processes that they serve span over multiple networks, computers, and pro-
gramming languages. What makes things even more complicated is that pieces
of software serving specific business goals (the steps of business processes) are
dynamically changing. As a consequence, a rchitects and developers face sys-
tem integration issues in a dynamically changing technical and business en-
vironment. Until recently, integration of systems has been performed either

Received by the editors: 2008.08.
2000 Mathematics Subject Classification. 68M14.
1998 CR Categories and Descriptors. C.2.4 [Computer Systems Organization]:

Computer-Communication Networks – Distributed Systems;
Key words and phrases. distributed applications, security, runtime access control, .NET.

1

2 KRISZTIÁN PÓCZA, MIHÁLY BICZÓ, ZOLTÁN PORKOLÁB

manually or using hard-coded modules that were difficult to maintain and
failed in a changing environment. Manual integration has been time consum-
ing and prone to errors, while hard coded solutions require knowledge of all
connected systems and have to be re-designed and implemented when any of
the underlying systems or steps of the business process changes.

It is Service Oriented Architecture (SOA) [1] [10] that answers the most
common difficulties of system integration. From the historical point of view,
SOA is an evolution of modular programming, so it extends its basic prin-
ciples. Reuse, granularity, modularity, composability, componentization, and
interoperability are common requests for a SOA application as well as for
modular object oriented applications.

However, while the elementary building block of an object oriented soft-
ware is the class, the basic element of a SOA application is typically a much
larger component. These larger chunks of functionality are called services, and
this is where the name Service Oriented Architecture originates from. Services
implement a relatively large set of functionality, and should be as independent
of each other as possible. This means that services should have control over
the logic they encapsulate and should not call each other directly. Rather, if
a more complex behavior is required, they should be composed to more com-
plex composite services. In other words, services should be autonomous and
composable.

Services expose their functionality through service contracts. A contract
describes the functions that can be invoked, the communication protocols as
well as the authentication and authorization schemes. The exposed function-
ality is usually a public interface that can be called by anyone who is authen-
ticated, aware of the existence of the service and uses the required commu-
nication protocol. The keyword is that the exposed functionality is basically
public, and users have quite limited amount of control over the identity and
the nature of a caller.

However, in a realistic scenario it can also happen that the identity of the
caller or the set of allowed methods depends on the state of the underlying
business process or other available information. This is usually hard to express,
and due to the lack of technology support for fine-grained, or higher level
access control, it is challenging to implement the above mentioned scenario
using standard protocols, programming environments and tools.

In [4] [15] we have implemented a pilot approach to implement Eiffel-like
selective feature export in C# 3.0. This solution makes it possible to control
access to protected resources (methods of ’public’ interfaces) in a declarative
way using simple declarative syntax using the concepts of Aspect Oriented
Programming [12]. Although the approach works well in everyday application,
it cannot be applied in the case of distributed systems.

SECURING DISTR. .NET APPS USING ADV. RUNTIME ACCESS CONTROL 3

What makes things even more complicated is that SOA usually integrates
systems running on multiple computers and environments, in other words
these systems are distributed ones. To successfully implement our solution we
have to sacrifice the interoperability property of SOA, which means that our
connected applications have to be created using homogeneous communication
platforms. The exposed services are required to be aware of some information
about clients. Although this requirement is not common for SOA applications,
however, other important properties of SOA can remain unchanged (contract
based interface specification, autonomous services). Moreover, the security
validation attributes can be regarded as part of the contract.

In this paper our aim is to establish a framework that enables users to
control access to the members of public interfaces in a SOA-enabled distributed
object system [17].

There are several authors who deal with the security of distributed appli-
cations and show the importance of the topic [2] [21]. There are techniques
which can be used to generate formal proof of an access request satisfying an
access-control policy [3].

[6] provides a method for specifying authorization constraints for workflow
based systems that include separation of duty constraints (two different tasks
must be executed by different users), binding of duty constraints (same user
is required to perform multiple tasks) and cardinality constraints (specify the
number that certain tasks have to be executed). A custom reference monitor
has been also specified that checks the previously mentioned properties of
workflows and workflow tasks.

The concepts in [8] are based on the workflow RBAC authorization rules
that are represented as a tuple (r, t, execute, p) that states that users in r
role can execute task t when an optional predicate p holds true). They create
an extension to the WARM methodology that enables to determine workflow
access control information from the business process model. [21] presents
an approach where the workflow access control model is decoupled from the
workflow model that enables them to create a service oriented workflow access
control model. Our solution follows a different approach that makes it more
compact but harder to configure.

Another way would be to create a DSL that is dedicated to implementing
services [5] and extend this language with security concepts.

There are approaches that store and control policy settings using some
centralized database [7] or have multiple layers of configuration [18]. We de-
cided to create an application specific solution and have unified configuration
methodology.

In Section 2 we present a simple motivating example that draws attention
to issues when not using fine-grained access control mechanisms.

4 KRISZTIÁN PÓCZA, MIHÁLY BICZÓ, ZOLTÁN PORKOLÁB

In Section 3 we present a semi-formalized approach to solving problems
presented through the motivating example.

In Section 4 a possible implementation of the theory will be shown. The
chosen environment is the .NET platform, the Workflow Foundation engine
(now part of the .NET framework), and the C# programming language.

In the closing section we summarize our results, and present further re-
search areas.

2. Motivating Example

2.1. Ping-Pong Game. In order to highlight the problematic parts when
accessing fully public SOA interfaces, in this subsection we are going to show
a simple motivating example, is a ping-pong game.

The players of the ping-pong game run on different computers, so it is a
distributed application. We suppose that the reader knows the rules of the
game. The players register themselves at the game manager, who assigns a
unique identifier to both players.

The methods of the game are published as an interface. The Game man-
ager class implements this interface and exposes methods of the game to pos-
sible clients, primarily players.

A possible object diagram can be seen in Figure 1.

Figure 1. Possible object diagram of a distributed game

The game manager is a singleton, there is exactly one instance of the game
manager class.

SECURING DISTR. .NET APPS USING ADV. RUNTIME ACCESS CONTROL 5

The ’rules’ of the game can be described as a workflow. The workflow
itself and its state transitions is a finite state automaton. The finite state
automaton can be described as a UML activity diagram [19]. The activity
diagram can be seen in Figure 2.

The objects may possibly be hosted on different computers. The difficulty
is that we want to allow only objects of type Player to call methods of the
Ping-pong game object in this distributed environment. What makes things
even more complicated is that the ping-pong game has a well-defined sequence
of allowed events with a well-defined set of allowed callers, and we have to keep
the system consistent based on these rules.

2.2. Security Shortcomings of Recent Business Applications. In real
world business applications the sequence and branches of business operations
that instrument business processes are well defined and bounded. It is also
well defined who can execute a business operation in the lifetime of a business
process instance.

The business rules clearly define who is allowed to perform different tasks
and also define the exact workflow of our ping-pong game in troduced before
(even it is not a business application).

Unfortunately, in most real world applications these business rules are not
enforced on the server side, they are rather hard coded in the client appli-
cations. Moreover, the restricted functions - based on the user role and the
current state of the process - are simply hidden on the user interface. At the
same time the server is open for any kind of requests, therefore an attacker
can compromise the business process.

The reason of the previous can be one of the following:

(1) Architects and developers do not care of business security
(2) Architects and developers think that a simple firewall (that restricts

the access of the server from specific subnets) or some built-in authen-
tication is enough

(3) Architects and developers think or decide that it is satisfying to im-
plement business security on the client side

(4) There is no time and money to implement adequate security mecha-
nisms

(5) It is hard to implement business security in a distributed environment

Of course it is hard or cannot be carried out to change the mind of architects
and developers therefore we suggest a solution that makes server-side business
security checks easier and faster to implement.

6 KRISZTIÁN PÓCZA, MIHÁLY BICZÓ, ZOLTÁN PORKOLÁB

3. Solve Shortcomings

First we have to denote which client and business properties are suggested
to be checked and tracked to raise the business process security level:

(1) The runtime type of the caller class on the client side (pin g-pong
player in the ping-pong game)

(2) State of the business process (e.g. The rules of the ping-pong game in
our example)

(3) The identity of the client (e.g. Is it the first or the second player in
the ping-pong game?)

(4) Validate, verify the client itself (e.g. IP address, subnet or some kind
of certification of the client)

All of the previous are static or internal properties from the view of the busi-
ness process, therefore all of them can be checked using declarative syntax
(statically burned in) or can be read from a configuration database.

When creating a SOA application we publish a contract (an interface) to
clients. The previous properties can be validated contract-wide and can be
validated only for particular business operations published by the contract.

It means that the above properties can be validated at method level at
every single call. The granularity level of most of the above properties changes
from application level to method level. Informally speaking, we introduce a
business call level fine-grained ” firewall”.

In the next subsections we will examine these four properties from the
validability point of view.

We identified the need to give a semi-formalized description of our solution.
There are two approaches:

(1) Extend existing description languages (like BPEL [20] [11])
(2) Create a new language that only focuses on the problem presented in

this article

Because BPEL focuses on the business process rather than security, and uses
XML notation, we have chosen the second approach. BPEL and our semi-
formal description can be used side-by-side.

A contract (C) can be defined as a triplet of set of methods, restrictions
applied to the contract itself and the set of restrictions applied to individual
methods published by the contract.

C = ({M1,M2, . . . ,Mn}, RC , {RM1
, RM2

, . . . , RMn
})

The restrictions applied to the contract itself (Rc) can be formalized using
the following triplet:

SECURING DISTR. .NET APPS USING ADV. RUNTIME ACCESS CONTROL 7

Rc = ({Tc1 , Tc2 , . . . , Tcq
}, {Ic1 , Ic2, . . . , Icw

}, {Nc1 , Nc2, . . . , Nce
})

Here Tci
s represents a contract-level type restriction for allowed callers

(subsection 3.1), Ici
s denotes a contract-level identity restriction for allowed

callers (subsection 3.3), while Nci
s defines a contract-level network restriction

(subsection 3.4).
Security restrictions applied to a single method (Mi):

RMi
=

({TMi,1, TMi,2, . . . , TMi,ri
}, {(SMi,1, AMi,1), (SMi,2, AMi,2), . . . , (SMi,ti , AMi,ti)},

{IMi,1, IMi,2, . . . , IMi,yi
}, {NMi,1, NMi,2, . . . , NMi,ui

})

Here TMi,is, IMi,js and NMi,js are the same as their contract-level pairs,
whileSMi,j, AMi,j pairs describe the allowed state and state transition con-
straints (subsection 3.2).

3.1. Distributed Runtime Access Control. We have stated in one of our
previous work about in-process systems [4] that reducing the interface where
software components can communicate with each other increases software
quality, security and decreases development cost. Compile time or runtime
visibility and access control checking that support encapsulation is the key
part of modern languages and runtime environments [16]. They enforce re-
sponsibility separation, implementation and security policies. Most modern
programming languages like C++, C# and Java do not have sophisticated
access control mechanisms only introduce a subset or combination of the fol-
lowing access modifiers: public, private, protected, internal, and friend while
Eiffel defines sophisticated selective access control called selective export.

The Eiffel programming language [13] allows features (methods) to be
exposed to any named class. The default access level of a feature is the public
level. However, an export clause can be defined for any feature which explicitly
list classes that are allowed to access the underlying feature.

In this paper we suggest a runtime access control extension to distributed
environments where only well identified classes are allowed to access particular
methods. To achieve this goal, the server side should be extended with the
ability to detect the runtime type of the caller (client) using a declarative
solution that statically predefines the allowed callers at the contract or method
level.

Another possibility would be to restrict access for clients based on group
membership or roles (like DCOM [9]). In this case different callers in different
roles are to be assigned to (domain level) groups and restrict access of pub-
lished contracts for certain groups. Moreover, restrictions can be enforced at
the operation (method) level to achieve more fine-grained security.

In our ping-ping example only players can participate in matches).

8 KRISZTIÁN PÓCZA, MIHÁLY BICZÓ, ZOLTÁN PORKOLÁB

3.2. Business Process Validation. In [6] it is noted that it may be nec-
essary to impose constraints on who can perform a task given that a prior
task has been performed by a particular individual. In this section we feature
another approach to solve the problems stated in [6].

As we mentioned before business applications are driven by rules that
define the following properties:

(1) Who is allowed to perform specific actions in given states
(2) What is the resulting state of a state transition if a business operation

succeeds
(3) What is the resulting state of a state transition if a business operation

fails

In most cases, business processes defined by rules are hard-coded into appli-
cations, therefore they can be treated as static properties.

As suggested before operations exported on the interface are statically
bounded to certain process states in which they can be executed, furthermore
often initiate a state transition where the process gets into another well-defined
state.

Figure 2. State Machine of the ping-pong game

Business processes can be represented by state machines which are a kind
of directed graphs. Vertices of such a graph are the states of the state machine,
while edges are the state transitions between states.

The state machine representing the ’business process’ behind our p ing-
pong game can be described by the following UML Activity diagram in Figure

SECURING DISTR. .NET APPS USING ADV. RUNTIME ACCESS CONTROL 9

2 For the sake of simplicity we have not incorporated the error states and
events where for example one of the players loses the ball.

The first operation is where the first player gets the ball and hits it (evt-
Ping) to the other player therefore the game will be in Ping state. After that
the second player hits the ball (evtPong) to the first player and the game gets
into Pong state. Now the first player comes again (evtPing). If any of the
players get bored of the game the match can be finished (evtFinish).

It is easy to see that such state machines can be statically connected or
bounded to one or more published contracts. Operations can be checked if the
state machine is in a state that allows the particular operation and can trigger
state transitions. When the user instantiates one of the published contracts a
state machine instance is automatically attached to the contracts.

Static binding can be implemented declaratively and it is compulsory to
have one state machine instance per session.

To describe it formally remind the definition of the finite state machine or
simply state machine:

FSM = (Σ, S, s0, δ, F)

Where

(1) Σ represents the input alphabet, in our case the set of state transitions
(2) S is a finite not empty set of states
(3) s0 is an initial state, that is member of S
(4) δ : S × Σ → S is the state transition function
(5) F is the set of finite states, non-empty set in our case

Using the above definition the following restrictions can be applied:

∀iε[1..n] : ∀jε[1..ti]

{

SMi,jεS

AMi,jεΣ

(SMi,j, AMi,j)εDδ

It restricts the states, the state transitions and the state transitions avail-
able in certain states.

3.3. Client Identity Validation. In the previous two subsections we have
shown that it is indispensable to restrict callers by runtime type or group
membership and it is also indispensable to instrument the correct order of
business operation execution, enforce business rules.

Notwithstanding the previously mentioned two assurances there is another
problem that we show in the context of our ping-pong game. When Player
1 and Player 2 start playing a ping-pong match we have to ensure that the
players remain the same until the end of the match. In other words, t hey
do not change sides and they are not substituted with other players. In short

10 KRISZTIÁN PÓCZA, MIHÁLY BICZÓ, ZOLTÁN PORKOLÁB

we have to maintain and validate the identity of players until the end of the
match.

It is possible to dedicate a referee or coordinator that assigns well-defined
identities for participants that can be ensured at method calls. For example
the player that gets elected as First Player always gets Identity no. 1 while
the other player gets 2 .

The above may not give protection from tampering the player identity.
But when we assign the (Name of the Computer, Process Id, Object Refer-
ence Id) triplet to the identity and track it on the server side, it cannot be
tampered because the name of the computer must be unique on the network
level. Similarly the process id must be unique on the computer level; while the
object reference id (practically pair of the runtime type and some type-level
unique object id) must be unique on the process level (e.g. hash code is unique
for same-typed objects in .NET).

3.4. Network and Certificate Validation of Clients. Firewalls can re-
strict access from clients deployed on certain subnets or IP addresses to the
server. More advanced firewalls can restrict access to the server by domain
level user identity; however that capability is only a subset of distributed run-
time access control described in this paper.

Our first aim is to declaratively restrict access to specific contracts and
also methods for certain subnets even IP addresses.

The other thing that loosely relates to some sort of network-level valida-
tion of clients is client certificate validation. Using client certificates it can
be verified if the server communicates with a certified, trusted, verified and
possibly well-working client. The server can verify if it communicates with
clients having the certificate issued by a trusted authority.

3.5. Definition of Legal Calls. Let H be the information-set provided and
available at a method call:

H = (TH , Sa, IH , NH)

Where

(1) TH is the type of the caller
(2) Sa the actual state (business process state)
(3) IH is the identity of the caller
(4) NH is the network properties of the caller

We say that a call is legal with respect to a method (Mi), when H conforms
to the following restrictions:

(1) THε{TMi,1, TMi,2, . . . , TMi,ri
}
⋂

{Tc1, Tc2 , . . . , Tcq
}

(2) Saε{SMi,1, SMi,2, . . . , SMi,ti}
(3) IHε{IMi,1, IMi,2, . . . , IMi,yi

}
⋂

{Ic1 , Ic2, . . . , Icw
}

SECURING DISTR. .NET APPS USING ADV. RUNTIME ACCESS CONTROL 11

(4) NHε{NMi,1, NMi,2, . . . , NMi,ui
}
⋂

{Nc1 , Nc2 , . . . , Nce
}

The four restrictions apply to the four eligible properties of H. However,
the second restriction applies only to the available states because the state
transitions are restricted by the FSM itself.

4. Possible Implementation in the .NET 3.0 Environment

We have created a pilot implementation of the previously described se-
curity mechanism extension in .NET 3.0. .NET [14] is a programming plat-
form from Microsoft that helps to easily and effectively create even large scale
connected applications built on standard technologies like the Web Service
platform [20].

Version 3.0 of .NET introduced two innovative technologies that are used
by our solution:

(1) WCF - Windows Communication Foundation and
(2) WF - Windows Workflow Foundation

In the following two subsections we shortly describe the benefits of these tech-
nologies then show some implementation details.

4.1. WCF - Windows Communication Foundation. ’WCF is Microsoft’s
unified framework for building secure, reliable, transacted, and interoperable
distributed applications.’ [22]

In our situation it means that we get a unified interface for distributed
communication while we have the possibility to configure the communication
address and binding for our contracts. We can configure different transport
and messaging formats (binary, HTTP request, SOAP (Web Service), WSE*,
message queue, etc.), and the communication platform (data transfer protocol,
encoding, formatting, etc.).

4.2. WF - Windows Workflow Foundation. ’WF is the programming
model, engine and tools for quickly building workflow enabled applications.
WF radically enhances a developer’s ability to model and support business
processes.’ [23]

WF has the ability to model states and state transitions of state machines
that resembles mathematical state machines.

4.3. Ping-Pong Example. Because of space limitations we can show only
the server side of our implementation in detail. First we will show and explain
the contract definition of our ping-pong game exposed by WCF.

The following listing shows the contract definition as an interface in C#:

12 KRISZTIÁN PÓCZA, MIHÁLY BICZÓ, ZOLTÁN PORKOLÁB

[ServiceContract(SessionMode=SessionMode.Required)]

[StateMachineDriven]

[CallerIdentityDriven]

public interface IPingPongService : IMultiSession

{

[OperationContract]

[AllowedCaller("Client.Player")]

[AllowedIdentity("1")]

[AllowedState("stFirst,stPong")]

[RaiseTransitionEvent("PingEvent")]

int Ping();

[OperationContract]

[AllowedCaller("Client.Player")]

[AllowedIdentity("2")]

[AllowedState("stPing")]

[RaiseTransitionEvent("PongEvent")]

int Pong();

[OperationContract]

[AllowedCaller("Client.Player")]

[AllowedIdentity("1,2")]

[AllowedState("stPong")]

[RaiseTransitionEvent("FinishEvent")]

int Finish();

}

The first line contains a built-in ServiceContract attribute attached to
the IPingPongService interface that enables classes implementing the inter-
face to be exported as a service.

The StateMachineDriven and the CallerIdentityDriver attributes are
part of our framework that enables the contract to be validated against state
machine states and events, and check for the caller.

The IPingPongService interface inherits from the IMultiSession inter-
face which enables our solution to share the same session across multiple in-
stances of the same contract and also multiple instances of multiple contracts.
It is not used in this example; we only indicate the possibility with the remark
that SOA applications and distributed object systems do not encourage the
usage of sessions.

The OperationContract attribute is the method-level pair of ServiceContract
attribute. AllowedCaller and AllowedIdentity attributes define the allowed

SECURING DISTR. .NET APPS USING ADV. RUNTIME ACCESS CONTROL 13

caller types and identities at particular methods. The AllowedState attribute
relates to the state machine controlling the ping-pong game and dictate the
states that certain operations can be executed at while the RaiseTransitionEvent
attribute instructs our framework to do a state transition after successful
method executions.

The previously explained interface is exposed to the client side also while
the implementation of the interface stays on the server side and defines prop-
erties that are exclusively server specific:

[StateMachineParameters(typeof(PingPongWF),

typeof(PingPongController))]

class PingPongService : MultiSession,

IPingPongService

{

...

The StateMachineParameters attribute declares a state machine workflow
type and a controller type that will be instantiated when the first call occurs.
This state machine and controller instance will drive the process (the game in
our example).

4.4. Custom Behaviors. Every call to the exposed operations has to be
intercepted on the server side and the security checks described in this paper
have to be performed. WCF has the ability to extend our service endpoints
with custom behaviors that can be used to do security checks.

We mention that WCF calls do not submit the client side caller type and
identity information automatically therefore at the client side we have to add
headers to every call that contain this information using custom client-side
behaviors.

The following XML fragment shows the server side configuration that de-
fines the extension that is responsible for doing security checks before the
execution of the exposed operation:

<extensions>

<behaviorExtensions>

<add name="distrRac"

type="ServerLib.RACServerBehaviorExtension, ServerLib,

Version=1.0.0.0, Culture=neutral,

PublicKeyToken=d18ff0ec0229ce90" />

</behaviorExtensions>

</extensions>

At the client side, there is a similar configuration setting that refers to the
ClientLib.RACClientBehaviorExtension type in the ClientLib assembly.

14 KRISZTIÁN PÓCZA, MIHÁLY BICZÓ, ZOLTÁN PORKOLÁB

Connecting these extensions to the appropriate services some more lines
of XML configuration has to be added.

We show the client code fragment that adds the type of the caller to the
request headers that will be verified on the server side:

StackTrace stackTrace = new StackTrace(false);

StackFrame callerFrame = ClientHelper.GetCallerMethod(stackTrace);

request.Headers.Add(MessageHeader.CreateHeader(

DISTRRAC_HEADERID, DISTRRAC_NS,

callerFrame.GetMethod().DeclaringType.FullName));

On the server side the following code fragment is executed that checks the
type and identity of the caller:

string absUri = request.Headers.To.AbsoluteUri;

Type contract = ServerHelper.GetContract(absUri);

object []drivenAttrs = ServerHelper.GetDrivenByAttributes(contract);

MethodInfo targetMethod = ServerHelper.GetTargetMethod(absUri);

bool callerIdentityDriven =

ServerHelper.IsDrivenByCallerIdentity(drivenAttrs);

bool stateMachineDriven =

ServerHelper.IsDrivenByStateMachine(drivenAttrs);

if (callerIdentityDriven)

{

object[] callerAttrs =

ServerHelper.GetCallerAttributes(targetMethod);

string callerType =

request.Headers.GetHeader<string>(DISTRRAC_HEADERID,

DISTRRAC_NS);

if (!ServerHelper.IsCallerAllowed(callerAttrs, callerType))

{

throw new InvalidCallerException();

}

}

The state machine based verification is performed similarly, however, in that
case after the execution of the exposed operation the state machine is driven
to the next state.

The other components of the H information set can be checked similarly
therefore we omit the discussion of their implementation.

SECURING DISTR. .NET APPS USING ADV. RUNTIME ACCESS CONTROL 15

5. Summary and Future Work

In this paper we have studied access control mechanisms that can be ap-
plied in case of distributed software systems.

Applications serving business processes are usually implemented as a dis-
tributed system: they span over different servers on different networks. Typi-
cal properties of such applications include dynamism: the business goals they
serve change just as often as the programming or hardware environments. In
order to successfully fight challenges imposed by the nature of these applica-
tions, the basic principles of Service Oriented Architecture (SOA) have been
formed. SOA is a natural extension and descendant of modular programming:
the functions of modules are published through interfaces.

In our work we have focused on the public interfaces of SOA applications
with the following restrictions:

(1) The application should use homogeneous communication platform and
(2) The service should have some information about the clients.

We have described motivating examples showing why it is often not enough to
rely ourselves on standard security mechanisms of existing standards. Starting
from the motivating examples we have shown why lower level access control
mechanisms are necessary to protect the interfaces exposing functionality to
the outside world.

We have elaborated our research and extended the security context of dis-
tributed applications based on the following properties: distributed runtime
access control, business process and client identity validation, and the network
identity validation of clients. The above properties can be validated at method
level at every single call. The granularity level of most of the above proper-
ties changes from application level to method level. Informally speaking, we
introduce a business call level fine-grained ”firewall”.

We have been following a semi-formal approach of the topic, and have given
a definition of a legal method call. Other solutions described in the related
work section solve only a part of the security problems specific to distributed
enterprise applications while we aimed to create a framework that answers
most of emerging questions.

The formal approach described important runtime restrictions for dis-
tributed object systems. However, the formal approach itself cannot guarantee
that it can be implemented in practice. In order to prove the practical appli-
cability of the proposal, we have implemented a pilot framework in the .NET
3.0 programming environment. The implementation uses the innovative tech-
nologies of the .NET framework: Windows Communication Foundation and
Workflow Foundation. We exploited declarative programming to the maximal
possible extent.

16 KRISZTIÁN PÓCZA, MIHÁLY BICZÓ, ZOLTÁN PORKOLÁB

One of our further research directions can be the extension of the pilot
implementation with different environments, such as the Java platform. The
capabilities of widely used industrial standards should be analyzed, and, if
necessary, the presented formal framework should be refined in order to adapt
to different security mechanisms.

We designed our framework to be extensible with other custom security
mechanisms that may be orthogonal to the formalized and implemented ones.

This paper also shows the need for runtime access control in order to secure
distributed applications. Therefore we hope that similar frameworks will gain
popularity and help the quality improvement of complex, distributed systems.

References

[1] A. Barros, G. Decker, M. Dumas, F. Weber: Correlation Patterns in Service-Oriented

Architectures, In Proceedings of the 10th International Conference on Fundamental
Approaches to Software Engineering (FASE 2007), Braga (Portugal), 2007. Springer
Verlag, pages 245-259.

[2] M. Blaze, J. Feigenbaum, J. Ioannidis, A. D. Keromytis. The role of trust management

in distributed systems security, Secure Internet Programming. Springer Verlag, 1999,
pages 185-210

[3] L. Bauer, S. Garriss, M. K. Reiter. Efficient Proving for Practical Distributed Access-

Control Systems. Computer Security - ESORICS 2007, 2007, Springer Verlag, pages
19-37

[4] M. Biczó, K. Pócza, Z. Porkoláb. Runtime Access Control in C# 3.0 Using Extension

Methods, Proceedings of the 10th Symposium on Programming Languages and Software
Tools (SPLST 2007), Dobogókő (Hungary), 2007, pages 45-60.

[5] D. Cooney, M. Dumas, P. Roe: GPSL: A Programming Language for Service Implemen-

tation, In Proceedings of the 8th International Conference on Fundamental Approaches
to Software Engineering (FASE), Vienna, Austria, March 2006. Springer Verlag, pages
3-17.

[6] J. Crampton: A reference monitor for workflow systems with constrained task execution,
In Proceedings of the 10th ACM Symposium on Access Control Models and Technolo-
gies, pages 38-47, 2005.

[7] N. Damianou, N. Dulay, E. Lupu, M. Sloman and T. Tonouchi. Policy Tools for Do-

main Based Distributed Systems Management . IFIP/IEEE Symposium on Network
Operations and Management. Florence, Italy, 2002.

[8] D. Domingos, A. R. Silva, P. Veiga. Workflow Access Control from a Business Perspec-

tive. International Conference on Enterprise Information Systems, 2004
[9] Frank E. Developing Distributed Enterprise Applications With the MS Common Object

Model. Hungry Minds, 1997, ISBN 0-764580-44-2
[10] R. Gronmo, M. C. Jaeger, A. Wombacher: A Service Composition Construct to Support

Iterative Development, In Proceedings of the 10th International Conference on Fun-
damental Approaches to Software Engineering (FASE 2007), Braga (Portugal), 2007.
Springer Verlag, pages 230-244.

[11] M. B. Juric, B. Mathew, P. Sarang. Business Process Execution Language for Web

Services: BPEL and BPEL4WS, Packt Publishing, 2004, ISBN 1-904811-18-3

SECURING DISTR. .NET APPS USING ADV. RUNTIME ACCESS CONTROL 17

[12] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.-M. Loingtier, J. Ir-
win. Aspect-Oriented Programming, Proceedings of the European Conference on Object-
Oriented Programming, 1997, Springer Verlag, pages 220-242.

[13] B. Meyer. Eiffel - The Language, Prentice Hall, 1992. ISBN 0-13-247925-7
[14] .NET Framework: http://msdn2.microsoft.com/netframework/
[15] K. Pócza, M. Biczó, Z. Porkoláb. Runtime Access Control in C#, Proceedings of the

7th International Conference on Applied Informatics (ICAI), Eger, Hungary, 2007, jan.
28-31.

[16] A. Snyder. Encapsulation and inheritance in object-oriented programming languages. In
Proceedings of OOPSLA ’86, pages 38-45. ACM Press, 1986.

[17] Z. Tari, O. Bukhres. Fundamentals of Distributed Object Systems: The CORBA Per-

spective, Wiley, 2001, ISBN 978-0-471-35198-6
[18] D. Thomsen, D. O’Brien, and J. Bogle. Role Based Access Control Framework for Net-

work Enterprises. In Proceedings of 14th Annual Computer Security Applications Con-
ference. December 1998

[19] UML: http://www.uml.org/
[20] S. Weerawarana, F. Curbera, F. Leymann, T. Storey, D. F. Ferguson. Web Services

Platform Architecture : SOAP, WSDL, WS-Policy, WS-Addressing, WS-BPEL, WS-

Reliable Messaging, and More . Prentice Hall PTR, 2005.
[21] X. Wei, W. Jun, L. Yu, L. Jing. SOWAC: a service-oriented workflow access control

model. Proceedings of the 28th Annual International Computer Security and Applica-
tions Conferences, 2004, pages 128-134.

[22] Windows Communication Foundation: http://wcf.netfx3.com/
[23] Windows Workflow Foundation: http://wf.netfx3.com/

Eötvös Loránd University, Fac. of Informatics, Dept. of Programming
Lang. and Compilers, Pázmány Péter sétány 1/c. H-1117, Budapest, Hungary

E-mail address: kpocza@kpocza.net, mihaly.biczo@t-online.hu, gsd@elte.hu

