
7th International Conference on Applied Informatics
Eger, Hungary, 2007.

1

Runtime Access Control in C#*

Krisztián Póczaa, Mihály Biczób, Zoltán Porkolábc

a Dept. of Programming Languages and Compilers,
Fac. of Informatics, Eötvös Loránd University

e-mail: kpocza@kpocza.net

b Dept. of Programming Languages and Compilers,
Fac. of Informatics, Eötvös Loránd University

e-mail: mihaly.biczo@t-online.hu

c Dept. of Programming Languages and Compilers,
Fac. of Informatics, Eötvös Loránd University

e-mail: gsd@elte.hu

Abstract

Compile time or runtime visibility and access control checking is the key part of
modern languages and runtime environments. They enforce responsibility separation,
implementation and security policies. The Eiffel programming language defines
sophisticated selective access control, but most modern programming languages like
C++, C# and Java do not have this feature only a subset or combination of the following
access modifiers: public, private, protected, internal and friend. The .NET Framework
enforces some security policies in runtime called Code Access Security but this additional
mechanism is capable only to restrict external resource access for programs written in any
.NET-language like C#.

In this paper we describe the existing access control features of the C# language
then show a scenario where a more sophisticated access control is required. We introduce
a method level access control checking mechanism to C# which is able to enforce Eiffel-
like selective export in runtime. Our implementation does not require the modification of
the compiler and the caller, only the callee, and introduces minimal syntactic overhead. It
can be a practical solution for modular systems where runtime security is important.

Key Words and Phrases: object-oriented programming, access control, runtime, C#

MSC: 68N15 Programming languages

1. Introduction

Compile time or runtime visibility and access control checking is the key part of modern
languages and runtime environments. The two main fundamental concepts of object oriented
programming languages are encapsulation and inheritance [6]. Encapsulation means that the

* Supported by the Hungarian Ministry of Education under Grant FKFP0018/2002

2 7th International Conference on Applied Informatics

programmer collects related services and data in a single type or class and enforces strong
cohesion between them while hides the internal implementation and data structures from the
outside world. Inheritance is a parent child relationship between types or classes which attract
polymorphism based on the virtual nature of methods. Access control checking can be
performed in compile time and in runtime also.

Using access control we can determine whether particular classes and class members can
be accessed from and published to the outside world. Access control enforces a built-in security
system in point of class member access. Different parts and modules can see and invoke only a
slice of data stored and services implemented in the program.

In this paper we describe the existing access control features of different programming
languages especially the C# language, then show a scenario where a more sophisticated access
control is required. We introduce a method level access control checking mechanism to C#
which is able to enforce Eiffel-like selective export [2] in runtime. Our implementation does
not require the modification of the compiler and the caller, only the callee, and introduces
minimal syntactic overhead. It can be a practical solution for modular systems where runtime
security is important. After that we show the performance of our solution and discuss the
results.

2. Access control features of different languages

In this section we describe the existing access control features of different programming
languages especially the C# language.

The C++ language can be regarded as the ancestor of many modern programming
languages like C#, D and Java therefore we describe the access control features of the C++
language [3] first. Access control can be performed at class level and class member level also.
The default class level access control in C++ is private which can be changed to public. It
means that by default a class is not visible to the outside world but this behaviour can be
overridden. Class members can be declared as public, private and protected. Public members
are reachable from any method of any class while private members can be reached only from
the current class methods. Class members declared as protected can be reached from the
methods of the current class and the derived classes. In C++ there is a special kind of methods
and classes called friend. Friend methods and classes can access all the private and protected
members of a particular class which accepts them as friend. C++ has three kinds of inheritance
mode (public, private and protected) which controls the access control of the inherited
members in the derived class.

This results in a matrix which can be seen in Table 1.
 access modifier
 in the base
 class

Inheritance mode

public private protected

Public public private protected
Private private private private

Protected protected private protected

Table 1: Inheritance modes and access modifiers in C++

K. Pócza, M. Biczó, Z. Porkoláb: Runtime Access Control in C# 3

Members that become public in the derived class can be accessed in the derived class and
also from the outside world. Members that become protected can be accessed only in the
derived class, while members that become private are hidden in the in the derived class and
cannot be accessed from the outside world.

The Java programming language [7] does not have such complex access control features
like C++. Class level access control in Java can be public or package-private. Package-private
visibility means that a particular class is visible only in the package where it was defined. At
class member level, Java has four levels of access control: public, private, protected and
package-private (default). In contrast to C++, Java does not have different kinds of inheritance
levels. The inherited class members of the base class behave in the same way as in the public
inheritance mode of C++.

The Eiffel language has a very different approach [2] to access control that the previously
described C++ and Java languages. It has selective export, which means that different class
members (features in Eiffel’s terminology) can be accessed from different set of classes. For
example we can define that feature “A” can be accessed by everybody, feature “B” cannot be
accessed from the outside world, while feature “C” can be accessed from “Class1” and
“Class2”, and feature “D” can be accessed from “Class1” and “Class3”.

In the Ruby programming language [4] access control is determined dynamically, as the
program runs because Ruby is a fully interpreted language. The access control implementation
of Ruby is very near to the other popular object oriented languages; therefore it is only
interesting because the access control checking is done in runtime not in compile time.

In C# [1], the access control mechanism is very similar to Java’s implementation. C# has
two levels of access control: class and class member level. A class can be public, private and
internal. Public classes are accessible by everybody; private classes can be accessed from the
current namespace. Internal (default) classes behave in the same way as package-private classes
in Java; they are accessible from the current assembly. At class member level C# has five
different access modifiers: public, private, protected, internal and protected internal. Public,
private, protected and internal members behave in the same way as in Java. Protected internal
members behave as if they were protected and internal at the same time.

3. Motivation

In the previous section we described how modern object oriented programming languages
implement access control. In this section we will show that the current implementation of
access control in C# is insufficient in some scenarios, while Eiffel’s implementation would be
sufficient.

4 7th International Conference on Applied Informatics

Consider the C# code fragment:

The Book class shown in Listing 1 can return the title and the price of the book it represents, it
can give a stream which is responsible to retrieve the book’s content and it exposes a method
which can set the price of the book. These methods have to be public because we want them to
be reachable from the outside world.

We can ask the following questions:
1. Should everybody have the right to set the price of the book?
2. Should everybody have the right to read the book?

The answer of these questions is clearly no. Only somebody from the bookstore can set the
price of the book and only the reader of the book can read the book.

If we were using the Eiffel programming language we could easily distinguish which class
members are accessible by different callers.

4. Implementation

In the previous section we described a scenario where the current access control features of C#
are insufficient. In this section we describe the aims and conditions we would like to reach and
match in the context of access control in C#.

The most important aim is to implement a mechanism that can restrict the access of public
methods in the same way as Eiffel’s selective export. The compiler cannot be modified because
we would like to use the authentic Microsoft C# compiler which cannot be altered. Because we
cannot modify the compiler then access control checking can be done only in runtime like in
Ruby. We would like to reach our aim with minimal syntactic overhead. Because the solution
should be easy to read and understand; therefore we have chosen attributes and inheritance.
(Attributes are standard language elements of C# which can annotate some static information
about different language elements like classes, methods, etc.) When an unauthorized access is
encountered an exception should be thrown.

class Book
{
 public string GetTitle() { ... }

 public double GetPrice() { ... }
 public void SetPrice(double price) { ... }
 public BookReaderStream Read() { ... }
}

Listing 1: C# code fragment with insufficient access control

K. Pócza, M. Biczó, Z. Porkoláb: Runtime Access Control in C# 5

Consider the following example:

In Listing 2 attributes are used that indicate which caller types can access the particular
methods, and the class is inherited from the RuntimeAccessControlBase class. We haven’t
modified the compiler and do the job with minimal syntactic overhead. The attributes only
declare which caller types can access the methods but cannot check; therefore a custom call
interception mechanism should be incorporated into the system. This way a custom
implementation could check if the caller is in the list of allowed callers specified by the
attributes.

4.1. High-level implementation

Because the attributes only declare which caller types are able to reach the particular methods,
the RuntimeAccessControlBase class has to have some special behaviour where the access
control can be implemented.

Consider the implementation of the RuntimeAccessControlBase class in Listing 3:
As it can be seen the RuntimeAccessControlBase class is inherited from ContextBoundObject
and has the Intercept attribute. ContextBoundObject [1, 5] is a system class which resides in the
System namespace of the Microsoft .NET Base Class Library and it is responsible to provide a
dedicated context to every object which inherits from ContextBoundObject. The context is
created during the activation of the context-bound objects, and destroyed when the object
becomes garbage. Usage rules can be added to these objects by specifying an attribute inherited

class Book : RuntimeAccessControlBase
{
 [AllowedCallerClass(typeof(Reader))]
 [AllowedCallerClass(typeof(BookStore))]
 public string GetTitle() { ... }

 [AllowedCallerClass(typeof(Reader))]
 [AllowedCallerClass(typeof(BookStore))]
 public double GetPrice() { ... }

 [AllowedCallerClass(typeof(BookStore))]
 public void SetPrice(double price) { ... }

 [AllowedCallerClass(typeof(Reader))]
 public BookReaderStream Read() { ... }
}

Listing 2: C# code fragment with runtime access control

[Intercept]
public class RuntimeAccessControlBase : ContextBoundObject
{
}

Listing 3: The implementation of RuntimeAccessControlBase class

6 7th International Conference on Applied Informatics

from ContextAttribute. In our case this attribute is called Intercept which is implemented by the
InterceptAttribute class. These usage rules are enforced when method calls are intercepted by
the .NET Common Language Runtime.

Far behind the Intercept attribute there is the implementation that is responsible to check
that the caller is from the list of allowed callers that the AllowedCallerClass attributes specify.

4.2. Low-level implementation

As we have mentioned previously the InterceptAttribute class is inherited from the
ContextAttribute [5] class and a new context is created during the activation of the context-
bound object. The default constructor of InterceptAttribute has to call the constructor of
ContextAttribute which has one string type parameter and pass a unique identifier (in our case
“Intercept”). Here we have to override the GetPropertiesForNewContext method which is
called at activation time and has one IConstructionCallMessage type parameter called ctorMsg.
The ctorMsg object has a ContextProperties collection, and a new InterceptProperty class
instance is added to this collection. The InterceptAttribute class can be seen in Listing 4.

The InterceptProperty implements the IContextProperty and the IContributeObjectSink
interfaces which enforce us to add some methods and properties to the class like Name,
IsNewContextOk and GetObjectSink. The Name property should return the same unique
identifier specified before (“Intercept”), the IsNewContextOk should return true. The
GetObjectSink has two parameters:

1. A MarshalByRefObject [1, 5] called obj which specifies a remote reference to the
original object

2. An IMessageSink called nextSink which specifies the next message sink
The method also returns an IMessageSink. In our case we return a new InterceptSink type class
instance which accepts the nextSink property in its constructor (Listing 5).

Every method call is represented by a message and returns a message also which
represents the return value. The InterceptSink class implements the IMessageSink interface.

The most important method we have to implement in this class is the
SyncProcessMessage, which accepts an IMessage parameter (represents the method call) and
also returns an IMessage (represents the return value). The method enforces the runtime access

[AttributeUsage(AttributeTargets.Class)]
class InterceptAttribute : ContextAttribute
{
 public InterceptAttribute()
 : base(InterceptProperty.IDENTIFIER)
 {
 }

 public override void GetPropertiesForNewContext(IConstructionCallMessage ctorMsg)
 {
 ctorMsg.ContextProperties.Add(new InterceptProperty());
 }
}

Listing 4: Implementation details of InterceptAttribute attribute

K. Pócza, M. Biczó, Z. Porkoláb: Runtime Access Control in C# 7

control rules described by the AllowedCallerClass attributes by calling
CheckSelectiveVisibility, and calls the next sink (Listing 6).

The CheckSelectiveVisibility method simply loops through the attributes of the currently
intercepted method stored in the MethodBase member of msg and checks if the direct caller is
specified by any of these attributes. If so then it allows to continue the program otherwise
throws an InvalidCallerException exception.

5. Performance results

We created a simple class with empty methods and enabled the runtime access control checking
method described in this article. We used empty methods to be able to measure the pure
performance of our solution. It performed about 4000 calls on a 2.6 Ghz Pentium 4 computer
using the Microsoft .NET Framework 2.0. We can ask the question if this is eligible or not. The
answer is that it depends on the use case. If the methods are simple class member variable
accessors then our solution is not eligible. However if the methods perform some database, file
or network access then the performance is eligible because an average database, file or network
operation can take much more time than 1/4000 seconds.

6. Further work

We have shown a new runtime access control checking method for the C# language which
supports any .NET-language because the cross-language nature of the .NET Framework.

In the current implementation only single caller class type checking is implemented but we
can extend it to support a class type and every type that is inherited from the specified ones.

Properties are special parameterless methods in the C# language that are generally
responsible for getting and setting a single class member variable; therefore they are similar to
Java’s getter/setter methods. It is important to add read/write access support to our runtime
access control solution to fully support the get/set properties.

public IMessageSink GetObjectSink(MarshalByRefObject obj, IMessageSink nextSink)
{
 return new InterceptSink(nextSink);
}

Listing 5: GetObjectSink method

public IMessage SyncProcessMessage(IMessage msg)
{
 CheckSelectiveVisibility((msg as IMethodCallMessage).MethodBase);

 return _nextSink.SyncProcessMessage(msg);
}

Listing 6: SyncProcessMessage method

8 7th International Conference on Applied Informatics

Classes can be placed in different roles at runtime or by specifying a custom interface at
compile time to be able to add role based security features to our solution.

We can analyze the performance issues of our solution and fix it or maybe find another
implementation way.

References

[1] Albert István (et. al. ed.): A .NET Framework és programozása, Szak, 2004.
[2] Bertrand Meyer, Eiffel: The Language, Prentice Hall, 1991
[3] Bjarne Stroustrup: A C++ Programozási nyelv, Hungarian translation (Porkoláb Zoltán (et. al.

ed)), Kiskapu, 2001.
[4] Dave Thomas, with Chad Fowler and Andy Hunt: Programming Ruby, The Pragmatic

Programmer's Guide, Second Edition, Addison Wesley Longman, 2001.
[5] Juval Lövy: Programming .NET Components, O’Reilly, 2003
[6] Nyékyné G. Judit (et. al. ed.): Programozási nyelvek, Kiskapu, 2003.
[7] Nyékyné G. Judit (et. al. ed.): Java 2 útikalauz programozóknak 1.3, ELTE TTK Hallgatói

Alapítvány, Budapest, Hungary, 2001

Postal addresses

Krisztián Pócza
Dept. of Programming Languages and Compilers,
Fac. of Informatics, Eötvös Loránd University
Pázmány Péter sétány 1/c., H-1117 Budapest,
Hungary

Mihály Biczó
Dept. of Programming Languages and Compilers,
Fac. of Informatics, Eötvös Loránd University
Pázmány Péter sétány 1/c.,H-1117 Budapest,
Hungary

Zoltán Porkoláb
Dept. of Programming Languages and Compilers,
Fac. of Informatics, Eötvös Loránd University
Pázmány Péter sétány 1/c.H-1117 Budapest,
Hungary

