7™ International Conference on Applied Informatics
Eger, Hungary, 2007.

Runtime Access Control in C#

Krisztian Pocza, Mihaly Biczab, Zoltan Porkolab¢

aDept. of Programming Languages and Compilers,
Fac. of Informatics, E6tvos Lorand University
e-mail: kpocza@kpocza.net

b Dept. of Programming Languages and Compilers,
Fac. of Informatics, E6tvos Lorand University
e-mail: mihaly.biczo@t-online.hu

C Dept. of Programming Languages and Compilers,
Fac. of Informatics, E6tvos Lorand University
e-mail: gsd@elte.hu

Abstract

Compile time or runtime visibility and access cohtchecking is the key part of
modern languages and runtime environments. Thegremfresponsibility separation,
implementation and security policies. The Eiffelogmamming language defines
sophisticated selective access control, but mosdemm programming languages like
C++, C# and Java do not have this feature onlybaetuor combination of the following
access modifiers: public, private, protected, imaerand friend. The .NET Framework
enforces some security policies in runtime called€Access Security but this additional
mechanism is capable only to restrict externalussoaccess for programs written in any
.NET-language like C#.

In this paper we describe the existing access abfeatures of the C# language
then show a scenario where a more sophisticatesbaaontrol is required. We introduce
a method level access control checking mechanisB#tahich is able to enforce Eiffel-
like selective export in runtime. Our implementatidoes not require the modification of
the compiler and the caller, only the callee, anttbduces minimal syntactic overhead. It
can be a practical solution for modular systemsra/ingntime security is important.

Key Words and Phrases:object-oriented programming, access control, metiC#

MSC: 68N15 Programming languages

1. Introduction

Compile time or runtime visibility and access cohtchecking is the key part of modern
languages and runtime environments. The two maiddmental concepts of object oriented
programming languages are encapsulation and iahegt[6]. Encapsulation means that the

" Supported by the Hungarian Ministry of Educatiomler Grant FKFP0018/2002

1



2 7" International Conference on Applied Informatics

programmer collects related services and data smgle type or class and enforces strong
cohesion between them while hides the internal émgintation and data structures from the
outside world. Inheritance is a parent child relaship between types or classes which attract
polymorphism based on the virtual nature of methoflscess control checking can be
performed in compile time and in runtime also.

Using access control we can determine whetherqodati classes and class members can
be accessed from and published to the outside wadckss control enforces a built-in security
system in point of class member access. Differantspand modules can see and invoke only a
slice of data stored and services implementeddrptbgram.

In this paper we describe the existing access abfeatures of different programming
languages especially the C# language, then sha&rasgo where a more sophisticated access
control is required. We introduce a method levaleas control checking mechanism to C#
which is able to enforce Eiffel-like selective expf?] in runtime. Our implementation does
not require the modification of the compiler ane ttaller, only the callee, and introduces
minimal syntactic overhead. It can be a practichltson for modular systems where runtime
security is important. After that we show the perfance of our solution and discuss the
results.

2. Access control features of different languages

In this section we describe the existing accesdrabffieatures of different programming
languages especially the C# language.

The C++ language can be regarded as the ancestamany modern programming
languages like C#, D and Java therefore we desthideccess control features of the C++
language [3] first. Access control can be perforraedlass level and class member level also.
The default class level access control in C++ iggbe which can be changed to public. It
means that by default a class is not visible to dbeside world but this behaviour can be
overridden. Class members can be declared as ppbl@te and protected. Public members
are reachable from any method of any class whikaf members can be reached only from
the current class methods. Class members declargoradected can be reached from the
methods of the current class and the derived dasseC++ there is a special kind of methods
and classes called friend. Friend methods andedassn access all the private and protected
members of a particular class which accepts thefrieagl. C++ has three kinds of inheritance
mode (public, private and protected) which contrtie access control of the inherited
members in the derived class.

This results in a matrix which can be seen in Table

access modifief
in the base
class public private protected
Inheritance mo
Public public private protected
Private private private private
Protected protected private protected

Table 1: Inheritance modes and access modifie€s-in



K. Pécza, M. Biczo, Z. Porkolab: Runtime Accesst@bim C# 3

Members that become public in the derived classbeaaccessed in the derived class and
also from the outside world. Members that beconmepted can be accessed only in the
derived class, while members that become privagehaiden in the in the derived class and
cannot be accessed from the outside world.

The Java programming language [7] does not havie soicplex access control features
like C++. Class level access control in Java capui#ic or package-private. Package-private
visibility means that a particular class is visilolely in the package where it was defined. At
class member level, Java has four levels of accessrol: public, private, protected and
package-private (default). In contrast to C++, Jdoas not have different kinds of inheritance
levels. The inherited class members of the bases ddlahave in the same way as in the public
inheritance mode of C++.

The Eiffel language has a very different appro@jhtq access control that the previously
described C++ and Java languages. It has seleexpert, which means that different class
members (features in Eiffel's terminology) can lmeessed from different set of classes. For
example we can define that feature “A” can be asm@dy everybody, feature “B” cannot be
accessed from the outside world, while feature ‘@@h be accessed from “Classl” and
“Class2”, and feature “D” can be accessed from $€14 and “Class3”.

In the Ruby programming language [4] access corgroletermined dynamically, as the
program runs because Ruby is a fully interpreteduage. The access control implementation
of Ruby is very near to the other popular objederded languages; therefore it is only
interesting because the access control checkidgrie in runtime not in compile time.

In C# [1], the access control mechanism is venyjlamto Java’'s implementation. C# has
two levels of access control: class and class memalvel. A class can be public, private and
internal. Public classes are accessible by evegyhmivate classes can be accessed from the
current namespace. Internal (default) classes leeinathe same way as package-private classes
in Java; they are accessible from the current dslyerAt class member level C# has five
different access modifiers: public, private, proéel internal and protected internal. Public,
private, protected and internal members behavhdrsame way as in Java. Protected internal
members behave as if they were protected and aitatrthe same time.

3. Motivation

In the previous section we described how moderreatbpriented programming languages
implement access control. In this section we wilbw that the current implementation of
access control in C# is insufficient in some scisamwhile Eiffel’s implementation would be

sufficient.



4 7" International Conference on Applied Informatics

Consider the C# code fragment:
classBook

{
public stringGetTitle() { ... }

public doubleGetPrice() { ... }
public void SetPricedoubleprice) { ... }
public BookReaderStreaRead() { ... }

}

Listing 1: C# code fragment with insufficient aceesntrol

The Book class shown in Listing 1 can return the &ind the price of the book it represents, it
can give a stream which is responsible to retribéeebook’s content and it exposes a method
which can set the price of the book. These methage to be public because we want them to
be reachable from the outside world.
We can ask the following questions:
1. Should everybody have the right to set the pricénefbook?
2. Should everybody have the right to read the book?
The answer of these questions is clearly no. Cmyebody from the bookstore can set the
price of the book and only the reader of the baak iead the book.
If we were using the Eiffel programming languageameld easily distinguish which class
members are accessible by different callers.

4. Implementation

In the previous section we described a scenariogeMine current access control features of C#
are insufficient. In this section we describe tirasaand conditions we would like to reach and
match in the context of access control in C#.

The most important aim is to implement a mecharfsah can restrict the access of public
methods in the same way as Eiffel's selective ex@dre compiler cannot be modified because
we would like to use the authentic Microsoft C# galer which cannot be altered. Because we
cannot modify the compiler then access control kimgccan be done only in runtime like in
Ruby. We would like to reach our aim with minimghtactic overhead. Because the solution
should be easy to read and understand; thereforbawe chosen attributes and inheritance.
(Attributes are standard language elements of Céhaban annotate some static information
about different language elements like classeshaadest etc.) When an unauthorized access is
encountered an exception should be thrown.



K. Pécza, M. Biczo, Z. Porkolab: Runtime Accesst@bim C# 5

Consider the following example:

classBook : RuntimeAccessControlBase
{
[AllowedCallerClasftypeofReade))]
[AllowedCallerClasftypeofBookStorg)]
public stringGetTitle() { ... }

[AllowedCallerClasftypeofReade))]
[AllowedCallerClasftypeofBookStorg)]
public doubleGetPrice() { ... }

[AllowedCallerClasftypeofBookStorg)]
public void SetPricedoubleprice) { ... }

[AllowedCallerClasftypeofReade))]
public BookReaderStreaRead() { ... }

}

Listing 2: C# code fragment with runtime accessti@in

In Listing 2 attributes are used that indicate Whiraller types can access the particular
methods, and the class is inherited from BntimeAccessControlBas#ass. We haven't
modified the compiler and do the job with minimghtactic overhead. The attributes only
declare which caller types can access the methodsdamnot check; therefore a custom call
interception mechanism should be incorporated itlie system. This way a custom
implementation could check if the caller is in tl&t of allowed callers specified by the
attributes.

4.1. High-level implementation

Because the attributes only declare which callpesyare able to reach the particular methods,
the RuntimeAccessControlBas#ass has to have some special behaviour whereadbess
control can be implemented.

[Intercep}
public clasfRuntimeAccessControlBase : ContextBoundObject

{
}

Listing 3: The implementation of RuntimeAccessColsase class

Consider the implementation of tReintimeAccessControlBaskass in Listing 3:
As it can be seen tHeuntimeAccessControlBastass is inherited frorContextBoundObject
and has the Intercept attribu@ontextBoundObjedt, 5] is a system class which resides in the
System namespace of the Microsoft .NET Base Cldssily and it is responsible to provide a
dedicated context to every object which inherisnfrContextBoundObjectThe context is
created during the activation of the context-bowdygects, and destroyed when the object
becomes garbage. Usage rules can be added toothjests by specifying an attribute inherited



6 7" International Conference on Applied Informatics

from ContextAttribute In our case this attribute is callederceptwhich is implemented by the
InterceptAttributeclass. These usage rules are enforced when mettlisdare intercepted by
the .NET Common Language Runtime.

Far behind thénterceptattribute there is the implementation that is oesible to check
that the caller is from the list of allowed call¢hat theAllowedCallerClassttributes specify.

4.2. Low-level implementation

As we have mentioned previously thaterceptAttribute class is inherited from the
ContextAttribute[5] class and a new context is created duringatté/ation of the context-
bound object. The default constructor loterceptAttributehas to call the constructor of
ContextAttributewhich has one string type parameter and passcuendentifier (in our case
“Intercept”). Here we have to override tligetPropertiesForNewContexnethod which is
called at activation time and has d@nstructionCallMessaggype parameter calledtorMsg
The ctorMsg object has &ContextPropertiescollection, and a nevnterceptPropertyclass
instance is added to this collection. TheerceptAttributeclass can be seen in Listing 4.

[AttributeUsagéAttribute TargetLClass)]
classinterceptAttribute ContextAttribute

public InterceptAttribute()
:baséInterceptProperty.IDENTIFIER)

{

}

public overridevoid GetPropertiesForNewConteb@onstructionCallMessagetorMsg)

{
ctorMsg.ContextProperties. Ade(v InterceptProperty());
}
}

Listing 4: Implementation details of InterceptAlbie attribute

The InterceptPropertyimplements thdContextPropertyand thelContributeObjectSink
interfaces which enforce us to add some methods profderties to the class liklame
IsNewContextOkand GetObjectSink The Name property should return the same unique
identifier specified before (“Intercept”), thésNewContextOkshould return true. The
GetObjectSinkas two parameters:

1. A MarshalByRefObjedtl, 5] calledobj which specifies a remote reference to the
original object
2. An IMessageSinkallednextSinkwhich specifies the next message sink
The method also returns #viessageSinkin our case we return a némterceptSinkype class
instance which accepts thextSinkproperty in its constructor (Listing 5).

Every method call is represented by a message enons a message also which
represents the return value. TihéerceptSinlkclass implements tH&lessageSininterface.

The most important method we have to implement His tclass is the
SyncProcessMessagehich accepts aiMessageparameter (represents the method call) and
also returns aiMessage(represents the return value). The method enfdheesuntime access



K. Pécza, M. Biczo, Z. Porkolab: Runtime Accesst@bim C# 7

control rules described by the AllowedCallerClass attributes by calling
CheckSelectiveVisibilityand calls the next sink (Listing 6).

public IMessageSiniGetObjectSink{larshalByRefObjecobj, IMessageSinkextSink)
{

returnnew InterceptSink(nextSink);

}

Listing 5: GetObjectSink method

The CheckSelectiveVisibilitymethod simply loops through the attributes of therently
intercepted method stored in thethodBasenember ofmsgand checks if the direct caller is
specified by any of these attributes. If so theallibws to continue the program otherwise
throws annvalidCallerExceptiorexception.

public IMessageSyncProcessMessadféessagemsg)
CheckSelectiveVisibility((msgsIMethodCallMessageMethodBase);

return_nextSink.SyncProcessMessage(msg);

}

Listing 6: SyncProcessMessage method

5. Performance results

We created a simple class with empty methods aallled the runtime access control checking
method described in this article. We used emptyhousg to be able to measure the pure
performance of our solution. It performed about@@@lls on a 2.6 Ghz Pentium 4 computer
using the Microsoft .NET Framework 2.0. We can tiskquestion if this is eligible or not. The
answer is that it depends on the use case. If #thods are simple class member variable
accessors then our solution is not eligible. Howévne methods perform some database, file
or network access then the performance is eligiblause an average database, file or network
operation can take much more time than 1/4000 skcon

6. Further work

We have shown a new runtime access control cheakietipod for the C# language which
supports any .NET-language because the cross-lgaquaure of the .NET Framework.

In the current implementation only single callaasd type checking is implemented but we
can extend it to support a class type and evewy tiyat is inherited from the specified ones.

Properties are special parameterless methods inCthdanguage that are generally
responsible for getting and setting a single chasmber variable; therefore they are similar to
Java’s getter/setter methods. It is important td sehd/write access support to our runtime
access control solution to fully support the get/seperties.



8 7" International Conference on Applied Informatics

Classes can be placed in different roles at runtmey specifying a custom interface at
compile time to be able to add role based secte#tures to our solution.

We can analyze the performance issues of our salatnd fix it or maybe find another
implementation way.

References

[1] Albert Istvan (et. al. ed.A .NET Framework és programozaSzak, 2004.

[2] Bertrand MeyerEiffel: The LanguagePrentice Hall, 1991

[3] Bjarne StroustrupA C++ Programozési nyelv, Hungarian translation @Rolab Zoltan (et. al.
ed)), Kiskapu2001.

[4] Dave Thomas, with Chad Fowler and Andy Humrogramming Ruby,The Pragmatic
Programmer's Guide, Second Editjgkddison Wesley Longman, 2001.

[5] Juval Lévy:Programming .NET Component3'Reilly, 2003

[6] Nyékyné G. Judit (et. al. edProgramozasi nyelvek, Kiskap2003.

[71 Nyékyné G. Judit (et. al. ed.JlJava 2 utikalauz programozéknak 1.BLTE TTK Hallgat6i
Alapitvany, Budapest, Hungary, 2001

Postal addresses

Krisztian Pécza

Dept. of Programming Languages and Compilers,
Fac. of Informatics, E6tvos Lorand University
Pazmany Péter sétany 1/c., H-1117 Budapest,
Hungary

Mihaly Bicz6

Dept. of Programming Languages and Compilers,
Fac. of Informatics, E6tvos Lorand University
Pazmany Péter sétany 1/c.,H-1117 Budapest,
Hungary

Zoltan Porkoléb

Dept. of Programming Languages and Compilers,
Fac. of Informatics, E6tvds Lorand University
Pazmany Péter sétany 1/c.H-1117 Budapest,
Hungary



