
Towards a Software Metric for Generic Programming Paradigm∗

Norbert Pataki
patakino@elte.hu

Dept. of Programming
Languages and Compilers,

Fac. of Informatics,
Eötvös Loránd University
Pázmány Péter sétány 1/c.,
H-1117 Budapest, Hungary

Krisztián Pócza
kpocza@kpocza.net

Dept. of Programming
Languages and Compilers,

Fac. of Informatics,
Eötvös Loránd University
Pázmány Péter sétány 1/c.,
H-1117 Budapest, Hungary

Zoltán Porkoláb
gsd@elte.hu

Dept. of Programming
Languages and Compilers,

Fac. of Informatics,
Eötvös Loránd University
Pázmány Péter sétány 1/c.,
H-1117 Budapest, Hungary

Abstract

Since McCabe’s cyclometric measure, structural com-
plexity have been playing an important role measuring the
complexity of programs. Complexity metrics are used to
achieve more maintainable code with the least bugs pos-
sible.

C++ Standard Template Library (STL) is the most popu-
lar library based on the generic programming paradigm.
This paradigm allows implementation of algorithms and
containers in an abstract way to ensure the configurabil-
ity and collaboration of the abstract components. STL is
widely used in industrial softwares because STL’s appro-
priate application decreases the complexity of the code sig-
nificantly.

Many new potential errors arise by the usage of the
generic programming paradigm, including invalid iterators,
notation of functors, etc.

In this paper we present many complexity inconsisten-
cies in the application of STL that a precise metric must take
into account, but the existing measures ignore the charac-
teristics of STL. We present proposal for a metric which can
measure STL-based code too.

1. Introduction

Structural complexity metrics play important role in
modern software engineering. However, the software met-
rics depend on used paradigm [10]. This fact makes hard to
create multiparadigm metrics.

Generic programming is one the most untended
paradigm from the view of paradigm, because most lan-
guages do not support this feature. C++ is multiparadigm

∗Supported by GVOP-3.2.2.-2004-07-0005/3.0

language that suppport this paradigm [12]. Most important
incarnation is the C++ Standard Template Library.

The C++ Standard Template Library (STL) is the
most popular library based on the generic programming
paradigm [1]. STL is widely-used, because the library is
the part of the C++ Standard [12]. It consists of many useful
generic data structures and generic algorithms, that work to-
gether with containers. STL is based on generalization and
generalization results in simplified interface.

C++ STL consists of three main parts: containers, iter-
ators and algorithms. Containers (e.g. vector, list, map,
set, etc.) are the generalization of arrays, so they hold el-
ements. Iterators guarantee access to the elements in con-
tainers. Iterators are nested types of containers. Iterators are
a generalization of pointers, their standard interface orig-
inates from pointer-arithmetic. Algorithms are fairly irre-
spective of the used container, because they work with iter-
ators. For instance, we can use the for each algorithm with
all containers. The complexity of the library is greatly re-
duced because of this layout. As a result of this layout we
can extend the library with new containers and algorithms
simultaneously. This is a very important feature, because
object-oriented libraries do not support this kind of exten-
sion. The C++ standard guarantees the complexity of the
operations.

STL applies the generic programming paradigm, so we
can expect that the common metrics can fail on this library
because of the metrics’ paradigm-dependence. As we will
see, the old metric tools are not precise enough.

2. Positive effects

STL is a popular library, because it greatly reduces the
complexity of a program from the view of programmers.
The library offers many positive effects to code, but some



of these effects cannot be measured by widely-used metrics.
STL makes the code more abstract, more powerful, more

expressive, so programmers can avoid many mistakes [5].
STL is a standard library, many books and online references
can be found (for example [1, 5, 12]).

3. Trivial inconsistencies

Many inconsistencies can be found between the common
metrics and uage of STL. Some of these inconsistencies are
quite clear.

One of the most obvious inconsistency is the widely-
used object oriented metrics fail on C++ Standard Template
Library, because this library is based on generic program-
ming and implementing classes is unnecessary. Of course,
we use objects and classes when the STL is applied, but
we can write STL-based code without any new classes.
Hence, the object-oriented metrics may fail on STL-based
programs.

Another important feature is that STL is standardized li-
brary, so names of functions and classes in the library are
well-known. The names express their behavior, for instance
the copy algorithm copies elements, the sort algorithm sorts
a container, etc. No external library can achieve this impor-
tant feature, and no existing metric can measure this special
advantage.

STL has been designed as a generic programming li-
brary, so STL has a reduced interface: algorithms can be
applied to more container types. The basic usage of the li-
brary is easy of attainment because of the reduced interface.
This is a good feature, because beginner programmers do
not shy away from STL. But this point is also not measured.

4. Complexity inconsistencies

In this section we examine some more sophisticated
problems.

4.1. Error diagnostics

Error diagnostics usually do not matter when measuring
software complexity. Metrics ignore syntactical and seman-
tical errors in the code and usually examine programs as
error-free software.

A simple mistake in STL-based code causes very long
and incomprehensible error diagnostics. For example, more
thousand character long error messages are not rare and of-
ten refer to unknown and unseen types and objects. Some-
times the errormessage points to the implementation of
STL.

Some software tools help us to reduce the complexity of
the messages, but these tools depend on the compiler and
STL implementation.

Modification or maintain of STL-based code can be
more difficult because of the complicate error diagnostics,
so we should take it into account.

4.2. Functors

C++ functors are special objects that offer an operator()
to simulate functioncalls. Functors are quite common ob-
jects in STL-based code, because functors can avoid the
overhead of non-inline functioncalls and some problems
about the name of template functions to get the code to com-
pile.

The problems of functors are their special requirements.
Functor classes are often inherited from special classes that
only support some typedefs. The names of these base
classes are unary function and binary function. These base
classes do not increase the complexity of a functor from the
viewpoint of STL programmer.

Functors are always passed by value. Polymorphism and
value passing an object do not work together, because the
object would be sliced. So, polymorphic functors are not
allowed.

4.3. Sorted ranges

Many problems arise from the inadequate usage of sorted
ranges. Some algorithms have a special precondition, e.g.
the input range must be sorted (for example, binary search,
equal range, set union, etc.). But the compilers do not
know what “sorted range” means, so the compiler cannot
help us at this point. If we call an algorithm of this kind to
an unsorted range, it causes undefined behavior. Unfortu-
nately STLlint [14] cannot discover the improper usage of
these algorithms. Using this kind of algorithms increases
the complexity of the code.

Using the same sorting predicate to the sort and algo-
rithm is important. If anyone violates this constraint it also
leads to undefined behavior.

4.4. Dataflow

Dataflow models measure by the parameter-passing.
This means the complexity of a program is based on pa-
rameters: how to read or write the arguments.

A basic problem is that we cannot read all parameter-
flows from an STL-based code. For example we write a
functor and we call an algorithm with this functor as an ar-
gument. It is invisible that the code will execute the func-
tor’s functioncall operator.

Another problem is that we cannot decide if an algorithm
modifies the container. For instance, let us consider the fol-
lowing two declarations. The find algorithm does not mod-
ify the container, but the sort algorithm does:



template <typename
InputIter,

typename T>
InputIter find(InputIter first,

InputIter last,
const T& t);

template <typename RanIter>
void sort(RanIter first,

RanIter last);

On the other hand, the parameters are not independent.
A container is passed by two iterators that define the range.
If we call an algorithm usually call it with special iterators:
begin and end iterators. It is so common that the program-
mers cannot make a mistake. So, iterators as parameters are
very closely to count them twice.

4.5. Invalid iterators

Probably the most serious problem is usage of invali-
dated iterators. The compilers cannot help solve this kind
of problem. Many kind of errors arise from usage of invalid
iterators.

Different containers have different observance of iterator
invalidating. The most trivial example of iterator invalidat-
ing is a reallocating vector, because their iterators do not
point proper element of the given vector after a reallocating
method.

This does not mean that the standard node-based con-
tainers are preferrel to contigous-memory containers. Both
have advantages and disadvantages. C++ Programmers
should know the rules of invaliding iterators.

4.6. Lack of inserter iterators

The problem of lack of inserter iterators also lead to un-
defined behavior. The compiler does not assist to avoid this
problem. This problem arises when an algorithm should
add elements to a container without using inserter iterators.

For instance, the following code leads to runtime-error,
because the code does not use inserter iterators:

int f(int x)
{
// ...
}
// ...
deque<int> src;
deque<int> dest;
transform(src.begin(),

src.end()
dest.end(),
f);

In the code above we wrote values to uninitialized mem-
ory: because after the dest.end() there is no necessary ini-
tialized space. When the algorithm writea to this space pro-
gram’s behavior would be undefined. We can surmount this
problem with inserter iterators:

transform(src.begin(), src.end(),
back_inserter(dest), f);

Or we want to add elements to the begin of container:

transform(src.begin(), src.end(),
front_inserter(dest), f);

4.7. Containers of auto ptrs

This problem is related with portability. Because the
C++ standard forbid containers that hold auto ptr (the
smart-pointer type in the standard library) because of the
auto ptr’s strange method of copy. Unfortunately, some
compilers concede the usage of containers of auto ptrs and
programers wants to avoid memory-leaks. But these pro-
grames are not portable, because many compilers keep the
prohibition.

5. Some proposals

In the paper [9] a multiparadigm metric is described. AV-
graph measures three main points of a given program: the
structure of the program, the dataflow in the program, and
the complexity of the used data structures.

We have seen that the dataflow model is not precise
enough. Informally speaking, the control structure also
fails on STL-based code, because the usage of STL replaces
many loops and if-statements.

It is also a common problem what can we mean by com-
plexity of the STL’s data structures. The complexity cannot
be an STL implementation-specific value.

Complexity of STL’s data structures should be based on
some “semantical concepts”: for instance, basic behavior of
the container (e.g. vector’s reallocting strategy), special pa-
rameters of a data structure, how copying works, etc.. The
previous inconsistencies are should be weighted and taken
into account. The weighting should be based on the rate of
made mistakes that can be realized from source of industrial
application.

6. Conclusion

C++ Standard Template Library is a widely-used library
based on the generic programming paradigm. Software
metrics are mostly paradigm-dependent, so we can expect
that the common metrics fail on C++ STL. In this paper we



present many inconsistencies between STL and the widely
used metrics. Our aim is to calibrate an old metric to mea-
sure STL-based code.

References

[1] Austern, M. H.: Generic Programming and the STL.
Addison-Wesley (1999)

[2] Chidamber, S.R., Kemerer, C.F., A metrics suit for ob-
ject oriented design, IEEE Trans. Software Engeneer-
ing, vol.20, pp.476-498, (1994).

[3] Howatt, J.W., Baker, A.L.: Rigorous Definition and
Analysis of Program Complexity Measures: An Ex-
ample Using Nesting, The Journal of Systems and
Software 10, pp.139-150, 1989

[4] McCabe, T.J., A Complexity Measure, IEEE Trans.
Software Engineering, SE-2(4), pp. 308-320, 1976

[5] Meyers, S.: Effective STL. Addison-Wesley (2001)

[6] Pataki, N., Porkoláb, Z., Istenes, Z.: Towards Sound-
ness Examination of the C++ Standard Template Li-
brary, In Proc. Electronic Computers and Informatics,
ECI’06, Herl’any, 2006.

[7] Piwowarski, R.E.: A Nesting Level Complexity Mea-
sure, ACM Sigplan Notices, 17(9), pp.44-50, 1982

[8] Porkoláb, Z., Sillye, Á.: Comparison of Object-
Oriented and Paradigm Independent Software Com-
plexity Metrics, ICAI’04, Eger, 2004

[9] Porkoláb, Z., Sillye, Á.: Towards a multiparadigm
complexity measure, In. Proc of QAOOSE Workshop,
ECOOP, Glasgow, pp.134-142, 2005

[10] Seront, G., Lopez, M., Paulus, V., Habra, N.: On the
Relationship between Cyclomatic Complexity and the
Degree of Object Orientation, In Proc. of QAOOSE
Workshop, ECOOP, Glasgow, pp. 109-117, 2005

[11] Sipos, Á., Pataki, N., Porkoláb, Z.: On Multiparadigm
Software Complexity Metrics (extended abstract), In
Proc. of 6th Joint Conference on Mathematics and
Computer Science, Macs’ 06, Pcs, 2006

[12] Stroustrup, B.: The C++ Programming Language.
Special Edition. Addison-Wesley (2000)

[13] Szab, Cs., Samuelis, L.: The A-Shaped Model of
Software Life Cycle In Proceedings of 5th Slovakian-
Hungarian Joint Symposium on Applied Machine In-
telligence and Informatics, Poprad, 2007, pp. 129-
135, ISBN 978-963-7154-56-0

[14] Gregor, D.: STLlint
http://www.cs.rpi.edu/˜gregod/STLlint/


