
Acta Cybernetica 00 (0000) 1–21.

A New Concept of Effective Regression Test

Generation in a C++ Specific Environment

Mihály Biczó∗, Krisztián Pócza∗, István Forgács† and

Zoltán Porkoláb∗

Abstract

During regression testing test cases from an existing test suite are run

against a modified version of a program in order to assure that the underlying

modifications do not cause any side effects that would demolish the integrity

and consistency of the system. Since the ultimate goal of a regression test set

is to effectively test all modifications and reveal errors in the earliest possible

stage, the maintenance of a relevant test set containing effective test cases

is of utmost importance. In this paper we present an efficient, C++ specific

framework to automatically manage the regression test suite. Our two main

contributions are a new interpretation of reliable test cases and a dynamic

forward impact analyzer method that eases the transformation of existing

tests to meet the definition of reliability. Using this approach we complement

the test set with test cases that pass through a modification and have an

impact on at least one output. Our approach is designed to be applicable to

large-scale applications.

Keywords: regression testing, dynamic impact analysis, software mainte-

nance, C++

1 Introduction

Regression testing is an important tool of software engineers to successfully manage
issues rising during the evolution of software systems. During the lifetime of large
systems numerous modifications are performed over possibly many years, yet it is
of vital importance that none of these modifications is allowed to remain untested,
or cause unwanted and undiscovered side effects to other previously tested parts.

In order to achieve this goal, a regression test set that covers the whole sys-
tem has to be maintained and adjusted according to the modifications performed.
Therefore, it is desirable to find a test selection method that selects those and only

∗Eötvös Loránd University, Fac. of Informatics, Dept. of Prog. Languages and Compilers,
Pázmány Péter sétány 1/C. H-1117, Budapest, Hungary E-mail: mihaly.biczo@t-online.hu,

kpocza@kpocza.net, gsd@elte.hu
†4D SOFT Ltd. Telepy u. 24. H-1212, Budapest, Hungary E-mail: forgacs@4dsoft.hu

2 Mihály Biczó, Krisztián Pócza, István Forgács and Zoltán Porkoláb

those test cases that might reveal an error [6]. However, it is equally important to
re-use and transform existing test cases so that the coverage of the modified system
would not be affected.

An important subset of regression tests contains modification revealing tests for
which the original and modified programs give different output. All modification
revealing tests are modification traversing, they reach at least one modified state-
ment. Consequently, the set of modification traversing tests also contains all error
revealing test cases [16]. Unfortunately, the reverse case is not true: a modifi-
cation traversing test is not necessarily modification revealing. Existing methods
consider a test case successful if the outputs of the original and modified programs
are identical. As it can be seen easily, using this approach it is not assured that
the modification is really tested. In other words, the test case is not necessarily
reliable.

In this paper we alter the existing definition of reliability: the definition of
a reliable test pair will be established. According to this definition, we develop
an approach that eases the generation of reliable test pairs in a C++ specific
environment. We will not cover test data generation techniques, related work can
be found in [2] [3] [9] [10]. Instead, we identify those input variables from the whole
state space on which the new generation process can be started. For the generation
process, the method described in [17] can be used initiated on a reduced input
variable set.

Our main contribution is a simple forward dynamic impact analyzer algorithm
which, if there is a given modification, will efficiently select the set of influencing
input variables and help boost the performance of the test pair generation process.
As opposed to existing methods [14], instead of directly comparing the output of
the original and modified programs for a given test case, the modified program and
the underlying test case are considered. The test suite will be extended with a
reliable test pair that is derived from the original test. This test pair will assure
that the modification is tested and that some output statements are affected in the
modified version of the program. An additional benefit of our approach is that it is
designed to work for real C++ based systems, since many C++ specific constructs
are covered including pointers and function pointers, as well as object-oriented
constructs and paradigms like classes, inheritance and polymorphism.

The structure of the paper is the following: Section 2 defines the problem we
are going to solve and presents the general overview of the generator framework
through simple examples. We also give an insight into test categorization methods
we are going to employ.

In Section 3 we discuss some related work and research directions we are aware
of. We will primarily focus on the motivating ideas behind existing techniques.

In Section 4 an overview of the used notations and necessary language specific
instrumentation mechanism will be described in detail.

In Section 5 and Section 6 the two stages of the dynamic forward input analyzer
algorithm that detects affecting input variables will be discussed. While the first
stage of the algorithm categorizes test cases and identifies affected statements; the
second stage selects the underlying input variables based on the results of the first

A New Concept of Effective Regression Test Generation in a C++ Spec. Env. 3

phase.
In Section 7 a full example of our approach will be presented in C++.
In Section 8 we summarize our results and discuss the limitations of the approach

as well as some possible research directions.

2 Framework overview

2.1 The necessity of a concept change

As we have mentioned in the introductory section, traditional regression testing ap-
proaches categorize test cases based on the outcome of the test case run against the
original and the modified programs. However, numerous anomalies might prevent
this comparison from being a good filter of errors.

The fundamental issue is that if a modification traversing test gives identical
output for the original and modified programs, this does not mean that any of the
modifications have really been tested. This is the case when the given modification
does not affect any output statements. The reverse case - when the outcome of the
original and modified programs differs - can also be problematic, because the test
might not be modification traversing for a given modification. As a consequence, if
there are more than one modifications (which is typically the case), classical modifi-
cation revealing tests might not be effective, and once again untested modifications
might lurk in the source code. A further example for different output is when the
mistakenly modified statement is a predicate, and the test takes another execution
branch, although it should go along the original path.

Listing 1 Three versions of a simple program

int main()
{

double a,b,c, d;

cin >> a;
b=2;
c=3;

d=a+c;

if(a>0)
cout << b << endl;

else
cout << c << endl;

//Use d...

exit(0);
}

int main()
{

double a,b,c, d;

cin >> a;

b=2;
c=3;

//Mod. #1: d=a+c;
d=a-c;

if(a>0)

cout << b << endl;
else

cout << c << endl;

//Use d...

exit(0);

}

int main()
{

double a,b,c, d;

cin >> a;

//Mod. #1: b=2;
b=3;

c=3;

d=a+c;

if(a>0)

cout << b << endl;
else //Mod. #2
cout << c+2 << endl;

//Use d...

exit(0);

}

Let’s consider the three different versions of a simple program in Listing 1. If
the input of the program (the test case) is a=1, then the outcome of the original
program is that 2 is printed on the screen. The second version still prints 2 for
a=1, which is a modification traversing test case, and is successful even though no

4 Mihály Biczó, Krisztián Pócza, István Forgács and Zoltán Porkoláb

modifications have been tested. In the third version there are two modifications.
Although for a=1 the outcome of the original and modified programs differs, the
test case is still not modification traversing for Modification #2. Although these
simple examples show only two possible anomalies, theoretically, there are four of
them: if the test case does not traverse any modifications, the output cannot be
affected (S0). The other three types of the same output symptom are coincidental
correctness (S1); predicate-only symptom, e.g. the modification influences (either
directly or indirectly) only a predicate (S2); or the modified statement does not
affect any output (S3).

2.2 The changed concept

In order to overcome the above mentioned shortcomings, we have to introduce a
new regression testing concept and criterion. Our goal is to test each modification in
such a way that - if possible - after the test traverses the location of the modification
at least one output statement would be affected. Of course the original test suite
might not contain tests that meet this criterion, so it is desirable to establish a
method that transforms all possibly usable regression test cases. This way, errors
can be revealed with a much higher probability and in an earlier stage.

In order to detect a faulty modification, the underlying test case has to

1. reach the fault (it has to be modification traversing with respect to the faulty
modification)

2. the inner state of the program has to be erroneous (the behavior of the pro-
gram has to differ from the expected)

3. the fault has to reach an output statement resulting in a failure (after the
traversal through the erroneous statement, an output statement should be
reached)

Common methods consider a test case successful if the outputs of the original
and modified programs are identical. The biggest concept change is that we fulfill
these requirements using a pair of test cases derived from the original test case
instead of just one test and these tests should affect output statements.

2.3 The test generator framework

We build our framework around the above set of criteria. We have had a strong
cooperation with an industrial partner, and the framework we present in this paper
is part of their project.

In order to fulfill the first requirement, modification traversing test cases have
to be selected for a given (possibly erroneous) modification. Different techniques
can be found in [5] [7] [8]. Identifying modification traversing test cases requires
two steps:

1. The modification needs to be detected

A New Concept of Effective Regression Test Generation in a C++ Spec. Env. 5

2. Appropriate test cases have to be identified

Of course in the case of real systems extending over possibly millions of lines
of code, it is far from being trivial to identify each modification in source code.
Our industrial partner has a static analyzer solution that identifies modifications
within due time for millions of lines of code. Although the algorithm and the imple-
mentation is part of a commercial application (which means that it is copyrighted
and cannot be published), for publicly accessible implementation the Columbus
framework [11] could be used.

In order to fulfill the second requirement, we establish the following definition
of reliable test cases:

Definition (Reliable test pair). Let GI={I1, I2, ... IM} the set of input
variables, I ⊆ {1, ...M}, I={i1,i2,...in}, J ⊆ {1, ...M}, J={j1,...jk} index sets.
Consider the following test cases: t1:=<ii1, ii2, ... iin>, t2:=<ij1,ij2,...ijk>, where
ii1, ii2,... iin, ij1, ij2, ... ijk are the values of the corresponding input variables. A
pair (t1, t2) of test cases is a reliable test pair with respect to statement sq (where
sq represents the qth execution of statement s) if t1 and t2 travels along the same
execution path until sq, the result of sq differs for t1 and t2, and t1 and t2 are ’close’
to each other (for numeric values the difference should be minimized according to
some metric).

Informally, the above definition states that a test case is reliable with respect to
a given modification if and only if the two test cases generate the same execution
path as far as sq, both of them have an influence on at least one output statement,
and the result of the output statements differ for the two test cases. Besides this,
their difference should be minimized according to the following rule: the number of
common variables in set I and J should be minimized, and for the common variables,
the difference between them should be minimized according to some metric. For
the Eucledian metric, this would be

√

∑

γ∈I∩J

iiγ
− ijγ

As for the third requirement, we will assume that all test cases in this case reach
a modification. Some of them will have an influence on the output, some of them
will not. However, in both cases it is highly desirable to transform them to a test
pair that meets the definition of reliability.

For the effective generation of test cases that meet the definition of our regression
testing criterion, we need a reduced set of input variables. This is the main task we
solve in this paper: according to the altered definition of reliable test cases (reliable
test pair), we are to reduce the set of input variables to so-called influencing input
variables. These are input variables that can be used to generate reliable test pairs
based on a modification traversing test case.

Our suggested solution for finding influencing input variables is a two stage
process. In the first stage the symptom (the anomaly, previously categorized as
S0-S3) is determined. In the second phase the set of influencing input variables

6 Mihály Biczó, Krisztián Pócza, István Forgács and Zoltán Porkoláb

are identified which can be used to turn the underlying test case to a reliable
test pair. Both stages of the algorithm are based on forward dynamic impact
analysis. Consequently, there is no need for large data structures in memory, and
all results can be obtained on-the-fly. The high-level structure of the framework is
the following:

1. Identify modifications

2. Select modification traversing test cases from the original test suite

3. For each selected test case

a) Identify symptom (S1, S2, S3)

b) Identify reduced set of influencing input variables

4. Generate a test pair in the reduced variable space using influencing input
variables

Our main contributions are 3a and 3b. The schematic structure can be seen in
the following figure (Our contributions are in the dark rectangle).

3 Related work, research directions

In this section we present related work that motivated our research. Paper [18] deals
with the empirical comparison of test selection techniques. Besides the commonly
used but rather desperate random and retest all techniques, minimization, dataflow
and safe test selection families are also covered in that article. Our suggested
approach has common properties with dataflow techniques that require that every
definition-use pair that is deleted, changed, or inserted into the changed program
should be tested. In [19] Harrold and Soffa select test cases that exercise the
definition-use pairs affected by the modification. Our approach is quite similar with
the important remark that we employ test pairs that are safer in case of predicates
and require not only the testing of the modification, but also the employment of at
least one output statement.

A New Concept of Effective Regression Test Generation in a C++ Spec. Env. 7

The two most relevant papers that motivated our research are [15] and [16].
The first paper deals with slicing algorithms [4] that do not use traditional data
structures, only dependence analysis to calculate program slices. The second paper
categorizes regression test cases based on their effect on the program output. We
compose and further simplify these approaches to reduce the set of input variables
on which new reliable regression test case generation can be based.

3.1 Graph-less dynamic slicing and impact analysis

In [15] a new approach of producing dynamic program slices is proposed. The
main idea of the work is to apply dependence analysis to dynamic slicing [1] [13]
[12] instead of employing traditional techniques that usually require a graph-based
representation and might seriously confine application possibilities due to memory
consumption. The dynamic dependences that are tracked are the same as in the
case of the graph representation, but instead of one huge graph, various smaller
data structures are maintained.

Besides introducing alternative dependence-based methods, slicing scenarios
are categorized [4] based on slicing direction, processing direction and global or
demand-driven nature of the algorithm. Our impact analysis that will be pre-
sented in Section 5 relate closely to the forward, demand driven algorithm in [15].
The difference between the two approaches lies in the fact that we will not produce
dynamic slices; therefore different data structures will be maintained. The reason
why we do not apply dynamic slicing is that we need only a set of variables, and
not a slice of the entire program.

3.2 Mutation-based regression testing

Paper [16] deals with regression test generation. The generation process has two
stages: in the first stage existing test cases are categorized similarly to the previ-
ously mentioned (S0, S1, S2, S3) cases. Based on the outcome of the first stage, a
new test case will be generated that effectively tests a modification. Our work is
derived from that article; however, there are a few important improvements. First
of all, we allow more than one modification to occur in the source code, and gen-
erate not only a test case, but a test pair. The test pair should match the changed
definition of reliability.

4 Tools and notations

In order to perform dynamic impact analysis, the source code has to be carefully in-
strumented. During the execution of the instrumented code each traversal through
a previously inserted sensor is registered. We will show that it is not necessary to
maintain a log file (which again can grow huge) and log the registered traversal.

The relatively complex instrumentation that is required for real C++ code can
be performed using various tools, like the Columbus framework [11]. In the follow-

8 Mihály Biczó, Krisztián Pócza, István Forgács and Zoltán Porkoláb

ing we briefly describe the used notations and information that instrumentation
must provide. We are going to employ sequence-point level instrumentation, which
means that sensors are inserted after each sequence point. This might imply that
the trace can grow too large to handle, however, as we will see, it can be produced
and processed on the fly.

For the identification of types, their fully qualified name is used

(namespace1::namespace2::...::Class1::Class2..).

All typedefs have to be resolved so that their corresponding type that can be
identified.

For the unique identification of variables, we use the following notation:

D(v, s, q, Av, Ap),

where v is the fully qualified name of the variable, s is the identification number
of the statement which runs the qth time, and v appears in the qth run of s. Since
C++ support pointer types, we have to distinguish between the memory location
where the variable resides, and the memory location it points to in case it is a
pointer. Av represents the memory location of the variable, and Ap is the pointed
memory location (for non-pointer typed variables, Av and Ap are equivalent). A
variable can be either global, static, local, or member variable. For the latter the

DD(Dobject, Dmember)

notation is used. Let’s consider the example when there is a class named Foo
and there is a Bar typed member variable called b. When we instantiate an object
of Foo at a uniquely identified program location, both members of the DD pair can
be filled in.

(s, q): Foo f;

Let’s suppose we would like to describe member b. Then the following entry
will be generated:

DD(D(Foo::f, s, q, 0x13217ffa4, 0x13217ffa4),

D(Bar::b, s, q, 0x1322a4c28, 0x1322a4c28))

Static, local or global variables can also be described this way with Dobject being
NULL in these cases.

For local variables the fully qualified name has to be integrated with the exact
block number where the local variable is defined. Pointer and function pointer
variables can be described similarly.

At each sequence point along the execution path we have to record the defined
(DEF) and used (USE) variables, and each variable has to be identified with the

A New Concept of Effective Regression Test Generation in a C++ Spec. Env. 9

above specified granularity. (Both of them contain variables that are identified
using the DD notation above.)

At each function we store the exact signature along with the source code location
in the call stack.

C++ rigorously defines destructors to be run deterministically when execution
leaves scope, or when an explicit delete is requested. Destructors should be instru-
mented just like ordinary functions, but with virtual or estimated line or column
number.

Another instrumentation requirement is in connection with the lazy evaluation
strategy of C++. Only those variables should appear in the instrumentation log
that are really used or defined. In the following we will refer to these variables as
actually defined/actually used variables.

5 Forward symptom analyzer algorithm

In this section we present our forward dynamic impact analyzer algorithm.
As we have shown previously, it is possible to identify memory locations for

each variable. Consequently, it is not necessary to start our algorithm from the
beginning of the program, rather from the location of the first occurrence of the
modified statement. However, this approach implicitly implies that the execution
history of the test case is the same for the original and modified programs until
the first occurrence of the modification. Unfortunately, the execution history can
be too large to log and to keep in memory, and the solution would not have a
significant advantage over dynamic slicing.

To overcome this difficulty, it is also possible to start the algorithm from the
very beginning of the program, and employ an online algorithm that processes log
entries on-the-fly. By online we mean that the instrumentation sensors write the
log entries to a buffered stream, and the impact analyzer fetches them on-the-
fly. Although this way a slight performance loss occurs, but we gain significant
advantage in the field of storage and memory consumption, which are usually the
critical factors.

Therefore, the input of the algorithm is not the execution history, rather a
test case that has previously been selected. The algorithm will identify both the
same-output symptom (S1/S2/S3) and the affected output statement or predicate
(P).

Along the execution path, all variables have to be meticulously identified and
tracked in order to easily maintain the DEF and USE sets at each sequence point.
To achieve this goal, all kinds of assignment operations between variables need to
be described in terms of the above notations. Originally, we treated simple (built-
in) and user-defined types separately, but it turned out that it is not necessary to
make distinction between the two categories. Since these two elements take the
same form, we explain only the assignment of simple (local) variables. Different
cases are shown in Table 1. In the first column the possible types of underlying
variables and the location of their definition is shown. The second column contains

10 Mihály Biczó, Krisztián Pócza, István Forgács and Zoltán Porkoláb

the assignment operations again with the location, while in the third column the
instrumentation entry can be seen. The format of the entry is in the following form:
L stands for assignment location, R for actually referenced variable, D for defined
variable. Please note that the location means a sequence point.

Variable types Assignment location/ Instrumentation
and locations operation entry
(Si,Qi) int i; (S,Q) i= j; L: (S,Q)
(Sj,Qj) int j; R: D(j, Sj, Qj, Avj, Avj)

D: D(i, Si, Qi, Avi, Avi)
(Si,Qi) int *i; (S,Q): i = j; L: (S,Q)
(Sj,Qj) int *j; R: D(j, Sj, Qj, Avj, Apj)

D: D(i, Si, Qi, Avi, Apj)
(Si,Qi) int *i; (S,Q): i = &j; L: (S,Q)
(Sj,Qj) int j; R: D(j, Sj, Qj, Avj, Avj)

D: D(i, Si, Qi, Avi, Avj)
(Si,Qi) int *i; (S,Q): i = j+2+a; L: (S,Q)
(Sj,Qj) *j; R: D(j, Sj, Qj, Avj, Apj)
int a; D: D(i, Si, Qi, Avi,

Apj+sizeof(*j)*(2+a))
(Si,Qi) int *i; (S,Q): *i = *j; L: (S,Q)
(Sj,Qj) int *j; R: D(j, Sj, Qj, Avj, Apj)

D: D(i, Si, Qi, Avi, Api)
(Si,Qi) int *i; (S,Q): *i = j; L: (S,Q)
(Sj,Qj) int j; R: D(j, Sj, Qj, Avj, Avj)

D: D(i, Si, Qi, Avi, Api)
(Si,Qi) int *i; (S, Q): i = new int; L: (S,Q)

R: -
D: D(i, Si, Qi, Avi, Api-New)

Table 1: Assignment of primitive types

As we have previously mentioned, the assignment of primitive types can be
applied to user-defined types as well, although there are some important extensions.
C++ allows programmers to overload default operators, including the assignment
operator. If there is no explicit user defined assignment operator in a class, then
the default assignment operator (member-wise assignment) will be applied. On the
other hand, if there is a custom assignment operator, its effect has to be preserved
in the execution history.

At this point we have all of the necessary information to describe the intra-
procedural version of the forward dynamic symptom analyzer algorithm. Later, it
will be extended to its final inter-procedural form.

The input of the algorithm is the test case, the location of the modification,
and the set of variables that are defined at the modified statement. Because the
set of defined variables at the modification is not known, and generating the whole

A New Concept of Effective Regression Test Generation in a C++ Spec. Env. 11

execution trace is not acceptable, the values of the actually defined variables have
to be calculated in a preprocessing step.

The preprocessing step requires the introduction of a set that stores variables of
interest along the execution path. This set will be referred to as Varstore. Varstore
is set to empty. At each variable assignment the defined variable calculated based
on rules listed in is added to Varstore. When execution leaves the scope, all local
variables will be removed. The same case holds when an explicit delete operation
is requested. When we reach the first occurrence of the modified statement, the
memory location of the actually defined variables can be calculated, and the set
Varstore can be deleted. The introduction of Varstore is important because of
the pointer typed variables of C++. Consider the example in Listing 2. All three
variables (n, ip, jp) will be added to Varstore, and at the predicate we can detect
that we refer to the same variable that was modified.

Listing 2 Pointer example

int n = 2;

int *ip = *jp = &n;

//modification:

*ip = 3; //original: *ip = 6;

...

if(*jp > 5)

After the initialization step we introduce a set called Affect for storing vari-
ables that are directly or indirectly affected by variables defined at the modified
statement. The main steps of our algorithm without the preprocessing step are the
following.

1. Affect is initialized with variables that are defined at the modified statement
imod and refer to the same memory location (based on Varstore), starting
point is set to imod.

2. From imod we traverse over statements (iq) along the execution path according
to test case T, and based on the type of this statement, we take one of the
following actions:

a) If iq is an output statement (in other words it is not a predicate and does
not define variables), and there is at least one used variable from Affect,
then the underlying symptom is trivially S1, and the affected statement
is sq, in addition the algorithm can safely terminate.

12 Mihály Biczó, Krisztián Pócza, István Forgács and Zoltán Porkoláb

b) If iq is a predicate, then all actually used variables are considered. If the
intersection of this set and Affect is not empty, then S2 is identified, and
the affected statement is iq. When predicate iqis the modified statement
then S2 is also identified at the modified statement.

c) If iq is an assignment, then for each w variable used at iq the presence
of the variable in Affect is checked. If a w variable is in Affect then the
defined variables in iq are added to Affect. The statement defining w is
marked as effective.
For each w variable in Affect it is checked if the w variable is defined at
iq and the last definition of w is not at iq. If the previous condition is
true then w is removed from Affect, moreover if the last definition is not
effective the S3 is identified.

In order to successfully extend this algorithm to the inter-procedural case, we
have to address parameter passing methods, and return values as well.

Method Modelling
By value D(j, Sj, Qj, Avj, Avj)
The same as (int i=j) D(i, Si, Qi, Avi, Avi)
By address D(j, Sj, Qj, Avj, Avj)
The same as (int *i=&j) D(i, Si, Qi, Avi, Avj)
OR OR
(int *i=j) if j is a pointer D(j, Sj, Qj, Avj, Apj)

D(i, Si, Qi, Avi, Api)
By reference D(j, Sj, Qj, Avj, Avj)

D(i, Si, Qi, Avj, Avj)

Table 2: Parameter passing methods and their representation

In C++ parameters can be passed via one of the following methods: by value,
by address, and by reference.

Within a function any assignment to a parameter that has previously been
passed by reference will not take effect outside the function, yet these assignments
can alter the execution path through the return value of the function. A parameter
passing by value can be modeled as an assignment to a local variable.

Parameter passing by address means the passing of pointer variables. Any
assignment to a pointer variable within a function will not cause any side effect
outside. Nevertheless, with the modification of the pointed memory location via
dereference (*) operator side effects may occur. Passing by address can be thought
of as introducing a new local pointer variable originally set to the same memory
location as the pointed memory location of the actual parameter.

Since a reference can be regarded as the synonym of a memory location, any
modification to a parameter passed by reference will take effect outside the function.

The three cases are summarized in Table 2 using the previously introduced
notation. Please note that j represents the actual parameter, while i is the formal
parameter.

A New Concept of Effective Regression Test Generation in a C++ Spec. Env. 13

Algorithm 1 Symptom analyzer

Function SymptomAndLocation(T, S, P)

1: Affect={imod.Def}
2: S = Nothing
3: for each statement iq in ExecutionPath(T) from imod to ilast do
4: if iq is output and iq.Use∩Affect 6= � then
5: S = S1;
6: P = iq;
7: terminate;
8: end if
9: if iq is predicate and (iq.Use∩Affect 6= � or iq is the modified statement)

then
10: S = S2;
11: P = iq;
12: terminate;
13: end if
14: if iq is definition or function return then
15: for each w ∈ iq.Use do
16: if w ∈ Affect then
17: Affect=Affect ∪ iq.Def
18: mark dw as effective
19: end if
20: end for
21: for each w ∈ Affect do
22: if w ∈ iq.Def and dw 6= iq then
23: Affect=Affect\{w}
24: if dw is not effective then
25: S=S3
26: P=iq
27: end if
28: end if
29: end for
30: end if
31: if iq is function call then
32: AssignParams(iq)
33: end if
34: end for

In order to complete our extension, we have to cover the handling of return
values. The return statement can also be substituted by a virtual assignment.
Namely, return I; can be exchanged to the actal retvar=I assignment operation.
This way we can trace back the problem of return values to different parameter
passing methods.

14 Mihály Biczó, Krisztián Pócza, István Forgács and Zoltán Porkoláb

The pseudo-code of the inter-procedural algorithm (which is basically the same
as the intra-procedural version) can be seen in Algorithm Listing 1.

6 Finding influencing input variables

In theory, we could either apply a backward or a forward algorithm to find those
input variables that have an influence on the statement that causes ineffectiveness.
However, since in the first step we developed and applied a forward method, it
would be more comfortable to extend that and keep the key concept. As we will
see, with very little adjustment the previous algorithm can be tuned to solve our
second problem. Consequently, the two stages can share the same implementation.

The main steps of the algorithm include:

1. Finding variable definitions of input variables. An input variable can be a
constant definition, data read from standard input/file, any parameter of
main, or a default parameter of a function.

2. We perform the previously described impact analysis with the difference that
we also keep track of effective input variables and omit those parts of the
algorithm that identify symptoms. Since we are unaware of at which predicate
should the execution path be altered, we monitor each predicate.

In the following we detail only the intra-procedural version of the algorithm,
since the inter-procedural version remains unchanged.

• The set Affect will contain variables directly or indirectly affected by any
input variables. We index the elements of Affect with the input variable
that has an influence on that specific variable. This means that Affect might
contain the same variable multiple times with different indices related to input
variables.

• Traverse along the execution path from the first statement, and consider each
statement iq. Based on the type of iq., the behavior of the algorithm differs.

• If iq. is an input statement, and variable d will be assigned at iq., then d(d) ∈
Affect

• If iq. is a predicate, then only actually executed conditions should be evalu-
ated. For each actually executed condition and for each actually used variable
if u(v) ∈ Affect, then v is added to effective input variable set of the predicate

• If iq. is an assignment statement, then the defined variable is deleted from
Affect with all indices. If some input variables are used, then the defined
variable is added to Affect indexed with the input variable. If a j non-input
variable is used, for which j(v) ∈ Affect, then d(v) is added to Affect.

• The influencing input variables can be calculated as the the union of effective
input variable sets of the predicates.

A New Concept of Effective Regression Test Generation in a C++ Spec. Env. 15

Algorithm 2 Influencing inputs

Function FindInfluencingInputs(T, V)

1: Affect={}
2: for each statement iq in ExecutionPath(T) from ifirst to ilast do
3: if iq is input statment then
4: Affect=Affect ∪ iq.Def (iq.Def)

5: end if
6: if iq is predicate then
7: for each u ∈ iq.ExecConditions.Use do
8: if u(v) ∈ Affect then
9: V(iq)=V(iq) ∪ v

10: end if
11: end for
12: end if
13: if iq is definition or function return then
14: for each d ∈ iq.Def do
15: for each d(v) ∈ Affect do
16: Affect=Affect \ d(v)

17: end for
18: end for
19: for each j ∈ iq.Use ∩ Affect.Indices do
20: Affect=Affect ∪ {iq.Def(j)}
21: end for
22: for each w ∈ iq.Use do
23: for each w(j) ∈ Affect do
24: Affect=Affect ∪ {iq.Def(j)}
25: end for
26: end for
27: end if
28: if iq is function call then
29: AssignParams(iq)
30: end if
31: end for

7 Full example

In order to present the usability of the proposed solution, we show the two stages
in work through a fully C++ compliant example.

The example deals with arithmetic operations. A general operation is repre-
sented as an abstract class, and all specific operations derive from this class. In
this simplified source we use two operations: addition and multiplication.

1. #include <iostream>
2. #include <string>

3. #include <stdlib.h>

16 Mihály Biczó, Krisztián Pócza, István Forgács and Zoltán Porkoláb

4. using namespace std;

5. namespace MathOperation
6. {

7. class Operation //base class
8. {

9. public:
10. //Pure virtual function
11. virtual int DoOperation(int x,int y)=0;

12. virtual string OpName()=0;
13. };

14. //Derived class 1

15. class AddOperation: public Operation
16. {
17. public:

18. int DoOperation(int x, int y)
{return x + y;}

19. string OpName() {return "Add";}
20. };

21. //Derived class 2
22. class MulOperation: public Operation

23. {
24. public:

25. int DoOperation(int x, int y)
{return x * y;}

26. string OpName() {return "Mul";}

27. };
28. }

29. class CImpactAnal
30. {

31. public:
32. void QueryMethod()

33. {
34. int oplocal;

35. cin >> oplocal;
36. this->opcode = oplocal;
37. }

38. void DoCalculation(int x, int y)
39. {

40. MathOperation::Operation *op = NULL;
41. //original: int opcode2=opcode;
42. int opcode2=opcode-1;

43. if(opcode2 > 1)
op = new MathOperation::AddOperation();

44. else
op = new MathOperation::MulOperation();

45. lastOp = op;
46. cout << " Result: " <<

op->DoOperation(x, y) << endl;

47. }
48. void LastOperation()

49. {
cout << "Last op: " <<
lastOp->OpName() << endl;

delete lastOp;
50. }

51. private:
52. int opcode;

53. MathOperation::Operation *lastOp;
54. };
55. int main(int argc, char* argv[])

56. {
57. CImpactAnal *ia = new CImpactAnal();

58. int x = 2;

A New Concept of Effective Regression Test Generation in a C++ Spec. Env. 17

59. int y = 3;

60. ia->QueryMethod();
61. ia->DoCalculation(x, y);
62. ia->LastOperation();

63. return 0;
64. }

The client code executes an arithmetic operation on two constants based on user
input. According to our previous definition, the program has three input variables:
x, y, and oplocal. Remember that an input variable is either a constant definition,
data read from standard input/file, any parameter of main, or a default parameter
of a function. x and y are constants (might be either parameters of the main
function), oplocal is user input.

For the sake of clarity, we present an example with exactly one modification,
which takes place at line no. 42. The modification affects an assignment statement,
because opcode2=opcode was changed to opcode2=opcode-1. (In case of more than
one modification, the same procedure applies until the first occurrence of the first
modification.)

In the following part we review the stages of the previously introduced algorithm
in order to identify test-case critical input variables.

The first section of the first stage is the preprocessing step. During this stage
the aim is to identify those variables that possibly get a new value at the modified
statement. In the current example the preprocessing step works as follows: The
entry point of the algorithm is set to the first line of the main function (to the
beginning of the program).

The Varstore set that stores variables of interest in the preprocessing step is
initialized to empty. After traversing line no. 57, there would be two entries in the
set Varstore. One of them represents the object pointer variable ia, and the other
the member variable opcode of type int. Then variables x and y are added during
the traverse over lines 58 and 59.

At line 60 there is a call to the QueryMethod member function of the CIm-
pactAnal class. When we reach line no. 34, the local variable oplocal is also added
to the Varstore set. At line 35 the value of oplocal is redefined, but its memory
location is unaffected, therefore there is no need to update its entry in the Varstore
set. At line 36 the value of class member variable opcode is set therefore it should
be added to Varstore. Since oplocal introduced at line 34 is a local variable, and
we leave the scope of this definition at line no. 37, at that point it is removed from
Varstore. Then execution returns to line no. 61, where there is a call to DoCal-
culation. At line 40 variable op, at line 42 variable opcode2 is added to Varstore.
At line 42 we reach the modified statement for the first time. The actually defined
variables can be calculated (in this case it is only opcode2). If there are any pointer
variables in Varstore, we have to check whether these variables point to some used
variables.

The next stage is the symptom analyzer algorithm. Variable opcode2 will be
added to the set Affect, and the algorithm is started from the modified statement.
Since the modified statement is an assignment, the used variables should be removed
from Affect, but opcode is not in Affect, so this step is not required. After that step

18 Mihály Biczó, Krisztián Pócza, István Forgács and Zoltán Porkoláb

variables that are defined at the underlying statement, but the last definition did
not take place at the current statement, are removed from Affect. This step now
does not execute because the previously mentioned conditions do not hold. Now
the algorithm advances to the next statement that takes places at line 43, and is a
predicate. Because the intersection of the used variables and the set Affect is not
empty, the modification has an influence on this predicate, so S2 is identified, and
the algorithm terminates.

The last step before automatic test generation is the identification of influencing
input variables. This stage starts at the beginning of the program. At each input
variable definition, the variable will be added to Affect indexed by itself. In our
example that means that x(x), y(y), and oplocal(oplocal) are added to Affect during
execution. At line 35 variable oplocal is redefined, there is no need to change Affect.
When we reach line 36, opcode(oplocal) is also added to Affect After leaving method
QueryMethod and entering DoCalculation we reach line 40 where the definition of
op resides. There is no need to add it to Affect because it does not depend on any
variables of Affect. As we previously mentioned there is an entry opcode(oplocal)

in Affect therefore when we reach line 42 defining opcode2 based on opcode, the
opcode2(oplocal) is added to Affect. Now we reached the modified statement where
the used variable is only opcode2 indexed by oplocal therefore we can establish that
the only influencing input variable is oplocal.

At this point we know that the identified symptom is S2, in other words the
modification influences a predicate in line 43. We have also managed to identify
the only input variable that influences that predicate.

The whole framework would then choose a regression test from the test suite
that reaches the modification. From this test a pair of test cases will be created
using a dataflow based generation algorithm. The variables that are allowed to
modify are the ones that have an influence on the predicate, in our case ’oplocal’.
The values of ’oplocal’ should be close to each other, and close to that value where
the predicate evaluates to different values (the test case should be sharp regarding
the influenced predicate).

8 Conclusion

In this paper we introduced a changed concept of regression testing that was mo-
tivated by the shortcomings of existing techniques. We have shown that classical
modification traversing and modification revealing regression tests are not neces-
sarily error revealing. The new concept focuses on the reliability of test cases, it
tries to assure that each test that reaches a modification has an influence on at
least one output statement.

In order to achieve this goal, existing test cases have to be filtered, and those that
are usable, should be transformed. So the main task is automated test generation
that is appropriate for the changed regression testing concept. Test generation can
be thought of as a search in a space spanned by the input variables of the program.
Unfortunately, the dimension of this search space can grow over the limits where

A New Concept of Effective Regression Test Generation in a C++ Spec. Env. 19

a search can be comfortably managed. Consequently, our goal was to reduce the
dimension of this search space, and find only input variables that have an influence
on the modification for a given test case.

Instead of dynamic program slicing, we applied a custom dynamic impact anal-
ysis which is more appropriate for this problem. Besides operating in a forward
manner, the algorithm is also superior to dynamic slicing in memory consumption,
which can be a critical factor when dealing with large applications.

All of our methods have been developed to work in a C++ specific language en-
vironment. Therefore, many C++ constructs have been covered in detail including
both procedural and object oriented constructs like pointers and function point-
ers, different parameter passing methods, classes, member and object variables and
inheritance. Since C++ exposes a wider range of language constructs and gives
more freedom to the programmer than most modern object oriented languages, we
believe that the proposed approach can be successfully adjusted to work in other
environments as well. The relative simplicity of the dynamic impact analyzer algo-
rithm is due to a complex instrumentation mechanism. The instrumentation step is
supported by the Columbus framework [11]. Since Columbus is currently not able
to handle all requirements we described, first we should extend that tool. A further
technical limitation is the handling of different C++ dialects. Although the ANSI
standard is adopted by nearly all compilers that are used for production systems,
many of them support additional features that do not comply with the standard.
Consequently, the instrumentation step has to prepare for differences.

In order to fully cover the potential of C++, we also have to address issues
related to the template mechanism. Technically, it is a must to be able to insert
the instrumentation stage after the preprocessing step has been completed.

References

[1] A. Beszedes, T. Gergely, Zs. M. Szabo, J. Csirik, T. Gyimothy. Dynamic slicing
method for maintenance of large C programs. CSMR 2001, pages 105–113.

[2] B. Korel, Ali M. Al-Yami. Automated Regression Test Generation. ISSTA
1998: 143–152

[3] B. Korel. Automated Test Data Generation for Programs with Procedures.
ISSTA 1996: 209–215

[4] F. Tip. A survey of program slicing techniques. Journal of Programming
Languages, 3(3):121–189, Sept. 1995.

[5] G. Rothermel and M.J. Harrold. A safe, efficient algorithm for regression test
selection. Proceedings of the International Conference on Software Mainte-
nance, pp. 358–367, September 1993.

[6] G. Rothermel and M.J. Harrold. Selecting tests and identifying test coverage
requirements for modified software. Proceedings of the International Sympo-
sium on Software Testing and Analysis, pp. 169–184, August 1994.

20 Mihály Biczó, Krisztián Pócza, István Forgács and Zoltán Porkoláb

[7] G. Rothermel and M. Harrold. Analyzing regression test selection techniques.
IEEE Transactions on Software Engineering, 22(8):529-551, August 1996.

[8] G. Rothermel, M. J. Harrold, and J. Dedhia. Regression test selection for C++
software. Journal of Software Testing, Verification and Reliability, 10(2), June
2000.

[9] I. Forgacs and A Hajnal. An Applicable Test Data Generation Algorithm for
Domain Errors. In Proceedings of the ACM/SIGSOFT International Sympo-
sium on Software Testing and Analysis, Clearwater Beach, Florida, March,
1998.

[10] Pargas, R. P., Harrold, M. J., and Peck, R. R. Test data generation using ge-
netic algorithms. The Journal of Software Testing, Verification and Reliability
9 (1999), 263–282.

[11] R. Ferenc, A. Beszedes and T. Gyimothy. Extracting Facts with Columbus
from C++ Code. In Tool Demonstrations of the 8th European Conference on
Software Maintenance and Reengineering (CSMR 2004), Tampere, Finland,
pages 4-8, March 24-26, 2004.

[12] R. Gupta, M. Harrold, M. Soffa. An approach to regression testing using
slicing. Conference on Software Maintenance, 1992, pp. 299–308.

[13] T. Gyimothy, A. Beszedes, and I. Forgacs. An efficient relevant slicing method
for debugging. In Proceedings of ESEC/FSE’99, number 1687 in Lecture Notes
in Computer Science, pages 303-321. Springer-Verlag, Sept. 1999.

[14] W. Wong, J. Horgan, S. London, and H. Agrawal. A study of effective regres-
sion testing in practice. In Proceedings of the Eighth International Symposium
on Software Reliability Engineering, pages 230–238, Nov. 1997. 10.

[15] A. Beszedes, T. Gergely and T. Gyimothy. Graph-Less Dynamic Dependence-
Based Dynamic Slicing Algorithms. In Proceedings of the 6th IEEE Int’l
Workshop on Source Code Analysis and Manipulation, pages 21–30. IEEE
Computer Society, 2006.

[16] I. Forgacs, E. Takacs. Mutation-Based Regression Testing. Conference pro-
ceedings. Tenth International Software Qualiti Week 1997. San Francisco,
1997. Vol. 2. San Francisco, Software Res. Inst., 1997.

[17] N. Gupta, A. Mathur, M. Soffa. Automated Test Data Generation Using
an Iterative Relaxation Method. Foundations of Software Engineering, pages
231–244, 1998.

[18] Graves, T. L., Harrold, M. J., Kim, J., Porter, A., and Rothermel, G. An
empirical study of regression test selection techniques. ACM Transactions on
Software Engineering and Methodology. 10, 2 pages 184–208, 2001.

A New Concept of Effective Regression Test Generation in a C++ Spec. Env. 21

[19] M. Harrold and M. Soffa. An incremental approach to unit testing during
maintenance. In Proceedings of the Conference on Software Maintenance,
pages 362–367, Oct. 1988.

Received ...

